
Getting Results with
ComponentWorks™
IMAQ Vision
ComponentWorks IMAQ Vision

June 1998 Edition
Part Number 321883A-01

Internet Support
E-mail: support@natinst.com
FTP Site: ftp.natinst.com
Web Address: http://www.natinst.com

Bulletin Board Support
BBS United States: 512 794 5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support
512 418 1111

Telephone Support (USA)
Tel: 512 795 8248
Fax: 512 794 5678

International Offices
Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725 725 11,
France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 6120092, Italy 02 413091,
Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 84 00,
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200,
United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100

© Copyright 1998 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not
execute programming instructions if National Instruments receives notice of such defects during the warranty period.
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs
of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages
arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’ S RIGHT TO RECOVER DAMAGES CAUSED
BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE
CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS,
OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of
National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues. National
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty
provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow
the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties,
or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without
the prior written consent of National Instruments Corporation.

Trademarks
ComponentWorks™, IMAQ™, and NI-IMAQ™ are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving medical
or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part of the
user or application designer. Any use or application of National Instruments products for or involving medical or clinical
treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeguards,
equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should always
continue to be used when National Instruments products are being used. National Instruments products are NOT intended
to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard human health
and safety in medical or clinical treatment.

© National Instruments Corporation v ComponentWorks IMAQ Vision

Contents

About This Manual
Organization of This Manual ...xix

Part I, Building ComponentWorks IMAQ Vision Applications.....................xix
Part II, Using the ComponentWorks IMAQ Vision Controls.........................xx
Part III, Introduction to Vision..xxi
Appendices, Glossary, and Index ..xxii

Conventions Used in This Manual...xxii
Related Documentation..xxiii
Customer Communication ...xxiii

Chapter 1
Introduction to ComponentWorks IMAQ Vision

What Is ComponentWorks IMAQ Vision? ...1-1
System Requirements ..1-2
Installing ComponentWorks IMAQ Vision...1-2

Installing From Floppy Disks..1-3
Installed Files...1-3

About the ComponentWorks Controls ..1-4
Properties, Methods, and Events ...1-4
Object Hierarchy ...1-5
Collection Objects ...1-6

Setting the Properties of an ActiveX Control ..1-7
Using Property Pages ..1-7
Changing Properties Programmatically...1-9
Item Method ..1-10
Working with Control Methods...1-10
Developing Event Handler Routines ...1-11

Learning the Properties, Methods, and Events ..1-11

Chapter 2
Getting Started with ComponentWorks

Install and Configure Driver Software...2-1
Explore the ComponentWorks IMAQ Vision Documentation......................................2-2

Getting Results with ComponentWorks IMAQ Vision Manual2-2
ComponentWorks Online Reference...2-3

Accessing the Online Reference ...2-3
Finding Specific Information ..2-3

Become Familiar with the Examples Structure ...2-4

Contents

ComponentWorks IMAQ Vision vi © National Instruments Corporation

Develop Your Application .. 2-4
Seek Information from Additional Sources... 2-6

PART I
Building ComponentWorks IMAQ Vision Applications

Chapter 3
Building ComponentWorks IMAQ Vision Applications with Visual Basic

Developing Visual Basic Applications.. 3-1
Loading ComponentWorks IMAQ Vision Controls into the Toolbox 3-2
Building the User Interface Using ComponentWorks 3-2

Using Property Pages.. 3-3
Using Your Program to Edit Properties.. 3-4

Working with Control Methods .. 3-5
Developing Control Event Routines ... 3-5
Using the Object Browser to Build Code in Visual Basic 3-6
Pasting Code into Your Program .. 3-8
Adding Code Using Visual Basic Code Completion 3-9

Creating Standalone Objects ... 3-10

Chapter 4
Building ComponentWorks IMAQ Vision Applications with Visual C++

Developing Visual C++ Applications ... 4-1
Creating Your Application.. 4-2
Adding ComponentWorks Controls to the Visual C++ Controls Toolbar 4-3
Building the User Interface Using ComponentWorks 4-4
Programming with the ComponentWorks Controls.. 4-5
Using Properties.. 4-6
Using Methods .. 4-8
Using Events ... 4-9

Creating Standalone Objects ... 4-10

Chapter 5
Building ComponentWorks IMAQ Vision Applications with Delphi

Running Delphi Examples... 5-1
Developing Delphi Applications ... 5-1

Loading ComponentWorks Controls into the Component Palette.................. 5-2
Building the User Interface ... 5-4

Placing Controls ... 5-4
Using Property Pages.. 5-4

Contents

© National Instruments Corporation vii ComponentWorks IMAQ Vision

Programming with ComponentWorks...5-5
Using Your Program to Edit Properties ..5-6
Using Methods ..5-6
Using Events ...5-7

Creating Standalone Objects..5-8

PART II
Using the ComponentWorks IMAQ Vision Controls

Chapter 6
Using the Viewer and Hardware Controls

Image Acquisition Configuration ..6-1
What Are the Viewer and Hardware Controls? ...6-1

Object Hierarchy ...6-2
Viewer Control—IMAQ User Interface Control...6-2

Viewer Object..6-3
Regions Collection ..6-4

Region Object ...6-4
Palette Object...6-4
Viewer Events ...6-4

IMAQ Control—IMAQ Hardware Interface...6-5
IMAQ Object...6-6
Image Object ...6-6
IMAQ Methods and Events...6-8

Asynchronous Acquisition..6-8
Synchronous Acquisition ..6-8
Error Handling ..6-9
ExceptionOnError and ErrorEventMask...6-9

Tutorial: Using the Viewer and IMAQ Controls ...6-10
Part 1: Synchronous, Single-Image Acquisition and Display6-10

Designing the Form...6-10
Setting the IMAQ Properties...6-11
Developing the Code...6-11
Testing Your Program...6-12

Part 2: Asynchronous, Continuous Single-Image Acquisition and Display....6-12
Designing the Form...6-13
Setting the IMAQ Properties...6-13
Developing the Code...6-13
Testing Your Program...6-13

Contents

ComponentWorks IMAQ Vision viii © National Instruments Corporation

Chapter 7
Using the Vision Control

What is the Vision Control? .. 7-1
Vision Functions.. 7-2
Tutorial: Using Simple Image Processing Functions .. 7-7

Part 1: Reading an Image From a File and Thresholding 7-7
Designing the Form .. 7-7
Developing the Code .. 7-8
Testing Your Program .. 7-9

Part 2: Particle Analysis.. 7-10
Designing the Form .. 7-10
Developing the Code .. 7-10
Testing Your Program .. 7-11

Part 3: Acquisition and Image Processing .. 7-11
Designing the Form .. 7-12
Setting the IMAQ Properties .. 7-13
Developing the Code .. 7-13
Testing Your Program .. 7-14

Chapter 8
Building Advanced IMAQ Vision Applications

Finding Features on a Printed Circuit Board... 8-1
Manipulating Regions of Interest through the User Interface......................... 8-2
AutoDelete, Active, and Visible Properties .. 8-3
Finding Features and Displaying Results.. 8-4

Floppy Disk Inspection.. 8-5
Manipulating Regions of Interest Programmatically 8-7
Edge Detection and Shape Matching .. 8-7

Report Objects ... 8-8
Adding Testing and Debugging to your Application .. 8-9

Error Checking.. 8-9
Exceptions... 8-10
Return Codes... 8-11
Error and Warning Events... 8-12
Debugging... 8-13

Debug Print... 8-13
Breakpoint .. 8-13
Watch Window ... 8-14
Single Step, Step Into, and Step Over .. 8-14

Contents

© National Instruments Corporation ix ComponentWorks IMAQ Vision

PART III
Introduction to Vision

Chapter 9
Algorithms, Principles of Image Files, and Data Structures

Introduction to Digital Images...9-1
Properties of a Digitized Image ...9-1

Image Resolution...9-2
Image Definition..9-2
Number of Planes ..9-2

Image Types and Formats..9-3
Gray-Level Images ..9-3
Color Images ...9-3
Complex Images..9-3

Image Files...9-5
Processing Color Images ...9-5
Image Pixel Frame ...9-6

Rectangular Frame...9-7
Hexagonal Frame...9-8

Chapter 10
Tools and Utilities

Palettes ...10-1
B&W (Gray) Palette ..10-2
Temperature Palette...10-3
Rainbow Palette...10-3
Gradient Palette ...10-3
Binary Palette ..10-4

Image Histogram..10-4
Definition...10-4
Linear Histogram...10-5
Cumulative Histogram...10-6
Interpretation ...10-6
Histogram of Color Images ...10-6
Histogram Scale...10-7
Line Profile..10-8
3D View...10-8

Contents

ComponentWorks IMAQ Vision x © National Instruments Corporation

Chapter 11
Lookup Transformations

About Lookup Table Transformations .. 11-1
Example .. 11-2

Predefined Lookup Tables... 11-3
Equalize... 11-4

Example 1 ... 11-4
Example 2 ... 11-5

Reverse.. 11-5
Example .. 11-6

Logarithmic and Inverse Gamma Correction.. 11-6
Exponential and Gamma Correction... 11-8

Chapter 12
Operators

Concepts and Mathematics.. 12-1
Arithmetic Operators ... 12-2
Logic Operators ... 12-2

Truth Tables .. 12-4
Example 1 ... 12-5
Example 2 ... 12-6

Chapter 13
Spatial Filtering

Concept and Mathematics ... 13-1
Spatial Filter Classification Summary .. 13-3

Linear Filters or Convolution Filters... 13-3
Gradient Filter ... 13-4

Example .. 13-4
Kernel Definition.. 13-5
Filter Axis and Direction .. 13-6
Edge Extraction and Edge Highlighting... 13-7
Edge Thickness... 13-9
Predefined Gradient Kernels... 13-10

Laplacian Filters.. 13-12
Example .. 13-12
Kernel Definition.. 13-13
Contour Extraction and Highlighting ... 13-14
Contour Thickness.. 13-15
Predefined Laplacian Kernels... 13-16

Contents

© National Instruments Corporation xi ComponentWorks IMAQ Vision

Smoothing Filter..13-17
Example ..13-17
Kernel Definition ..13-18
Predefined Smoothing Kernels ...13-19

Gaussian Filters ...13-20
Example ..13-20
Kernel Definition ..13-21
Predefined Gaussian Kernels ..13-21

Nonlinear Filters ..13-22
Nonlinear Prewitt Filter...13-22
Nonlinear Sobel Filter ...13-23
Example...13-24
Nonlinear Gradient Filter ..13-25
Roberts Filter ...13-25
Differentiation Filter..13-25
Sigma Filter ...13-26
Lowpass Filter ...13-26
Median Filter ...13-27
Nth Order Filter ...13-27

Examples...13-28

Chapter 14
Frequency Filtering

Introduction to Frequency Filters ..14-1
Lowpass FFT Filters..14-2
Highpass FFT Filters ...14-2
Mask FFT Filters ...14-2

Definition ...14-3
FFT Display ...14-4

Standard Representation..14-5
Optical Representation ..14-6

Frequency Filters ...14-7
Lowpass Frequency Filters..14-7

Lowpass Attenuation...14-7
Lowpass Truncation..14-8

Highpass Frequency Filters ...14-9
Highpass Attenuation..14-10
Highpass Truncation ...14-10

Contents

ComponentWorks IMAQ Vision xii © National Instruments Corporation

Chapter 15
Morphology Analysis

Thresholding.. 15-1
Example .. 15-2
Thresholding a Color Image ... 15-3
Automatic Threshold... 15-3

Clustering.. 15-3
Entropy ... 15-5
Metric.. 15-5
Moments ... 15-5
Interclass Variance.. 15-6

Structuring Element... 15-6
Primary Binary Morphology Functions... 15-7

Erosion Function ... 15-8
Concept and Mathematics .. 15-8

Dilation Function .. 15-8
Concept and Mathematics .. 15-8

Erosion and Dilation Examples... 15-9
Opening Function.. 15-10
Closing Function ... 15-11
Opening and Closing Examples.. 15-11
External Edge Function... 15-12
Internal Edge Function.. 15-12
External and Internal Edge Example .. 15-12
Hit-Miss Function ... 15-13

Concept and Mathematics .. 15-13
Example 1 ... 15-13
Example 2 ... 15-14

Thinning Function... 15-15
Examples .. 15-16

Thickening Function ... 15-17
Examples .. 15-18

Proper-Opening Function.. 15-19
Proper-Closing Function ... 15-20
Auto-Median Function.. 15-20

Advanced Binary Morphology Functions ... 15-21
Border Function .. 15-21
Hole Filling Function .. 15-21
Labeling Function ... 15-21
Lowpass Filters ... 15-22
Highpass Filters... 15-22
Lowpass and Highpass Example... 15-23

Contents

© National Instruments Corporation xiii ComponentWorks IMAQ Vision

Separation Function...15-24
Skeleton Functions ..15-24

L-Skeleton Function..15-25
M-Skeleton Function...15-25
Skiz Function ..15-26

Segmentation Function..15-26
Comparisons Between Segmentation and Skiz Functions................15-27

Distance Function..15-27
Danielsson Function ..15-28

Example ..15-28
Circle Function ..15-29

Example ..15-29
Convex Function ...15-30

Example ..15-30
Gray-Level Morphology ..15-31

Erosion Function ...15-31
Concept and Mathematics...15-31

Dilation Function...15-31
Concept and Mathematics...15-31

Erosion and Dilation Examples ...15-32
Opening Function ..15-33
Closing Function ...15-33
Opening and Closing Examples ..15-33
Proper-Opening Function ..15-34
Proper-Closing Function ...15-35
Auto-Median Function ..15-36

Chapter 16
Quantitative Analysis

Spatial Calibration ...16-1
Intensity Calibration ..16-2
Definition of a Digital Object ..16-2

Intensity Threshold..16-2
Connectivity ..16-3

Connectivity-8...16-3
Connectivity-4...16-4

Area Threshold ..16-4
Object Measurements ..16-5

Areas..16-5
Particle Number ..16-5
Number of Pixels ..16-5
Particle Area..16-5

Contents

ComponentWorks IMAQ Vision xiv © National Instruments Corporation

Scanned Area.. 16-6
Ratio.. 16-6
Number of Holes .. 16-6
Holes’ Area... 16-6
Total Area ... 16-6

Lengths.. 16-7
Particle Perimeter ... 16-7
Holes’ Perimeter ... 16-7
Breadth.. 16-7
Height ... 16-8

Coordinates ... 16-8
Center of Mass X and Center of Mass Y.. 16-8
Min(X, Y) and Max(X, Y).. 16-9
Max Chord X and Max Chord Y .. 16-9

Chords and Axes ... 16-9
Max Chord Length.. 16-10
Mean Chord X .. 16-10
Mean Chord Y .. 16-10
Max Intercept.. 16-10
Mean Intercept Perpendicular... 16-10
Particle Orientation... 16-10

Shape Equivalence .. 16-11
Equivalent Ellipse Minor Axis ... 16-12
Ellipse Major Axis.. 16-12
Ellipse Minor Axis.. 16-13
Ellipse Ratio ... 16-13
Rectangle Big Side ... 16-13
Rectangle Small Side.. 16-13
Rectangle Ratio... 16-14

Shape Features .. 16-14
Moments of Inertia Ixx, Iyy, Ixy .. 16-14
Elongation Factor ... 16-14
Compactness Factor.. 16-15
Heywood Circularity Factor ... 16-15
Hydraulic Radius .. 16-15
Waddel Disk Diameter ... 16-16

Densitometry... 16-18
Diverse Measurements.. 16-18

Contents

© National Instruments Corporation xv ComponentWorks IMAQ Vision

Appendices, Glossary, and Index

Appendix A
Common Questions

Appendix B
Error Codes

Appendix C
Distribution and Redistributable Files

Appendix D
Customer Communication

Glossary

Index
Figures and Tables

Figures
Figure 1-1. IMAQ Control Object Hierarchy ..1-6
Figure 1-2. Visual Basic Default Property Sheets ...1-8
Figure 1-3. ComponentWorks Custom Property Pages ...1-8

Figure 3-1. Visual Basic Property Pages..3-3
Figure 3-2. ComponentWorks Custom Property Pages ...3-4
Figure 3-3. Selecting Events in the Code Window..3-6
Figure 3-4. Viewing CWIMAQ in the Object Browser...3-7
Figure 3-5. Viewing CWIMAQ in the Object Browser...3-8
Figure 3-6. Visual Basic 5 Code Completion ..3-9

Figure 4-1. New Dialog Box..4-2
Figure 4-2. MFC AppWizard—Step 1 ..4-3
Figure 4-3. CWIMAQ Control Property Sheets ..4-5
Figure 4-4. MFC ClassWizard—Member Variable Tab..4-6
Figure 4-5. Viewing Property Functions and Methods in the

Workspace Window ..4-7
Figure 4-6. Event Handler..4-10

Contents

ComponentWorks IMAQ Vision xvi © National Instruments Corporation

Figure 5-1. Delphi Import ActiveX Control Dialog Box .. 5-2
Figure 5-2. ComponentWorks Controls on a Delphi Form 5-4
Figure 5-3. Delphi Object Inspector .. 5-5
Figure 5-4. ComponentWorks IMAQ Control Property Pages 5-5
Figure 5-5. Delphi Object Inspector Events Tab ... 5-8

Figure 6-1. Viewer Control Object Hierarchy... 6-3
Figure 6-2. IMAQ Control Object Hierarchy .. 6-6
Figure 6-3. Viewer Control and IMAQ Control Can Share an Image Object 6-7
Figure 6-4. Simple IMAQ Example Form... 6-11
Figure 6-5. Testing the Simple IMAQ Example ... 6-12

Figure 7-1. IMAQ File Example ... 7-8
Figure 7-2. Testing the IMAQ File Example... 7-9
Figure 7-3. Testing the IMAQ File Example After Adding Particle Analysis 7-11
Figure 7-4. Image Acquisition Threshold Example .. 7-12
Figure 7-5. Testing the Image Acquisition Threshold Example.............................. 7-14

Figure 8-1. Feature Find Application .. 8-2
Figure 8-2. Floppy Disk Inspection ... 8-6
Figure 8-3. Visual Basic Error Message.. 8-10
Figure 8-4. Error Message Box ... 8-12

Figure 9-1. Rectangular Frame .. 9-7
Figure 9-2. Hexagonal Frame .. 9-8

Figure 10-1. Linear Vertical Scale... 10-5
Figure 10-2. Linear Cumulative Scale... 10-6
Figure 10-3. Linear Vertical Scale... 10-7
Figure 10-4. Logarithmic Vertical Scale ... 10-7

Figure 15-1. Rectangular Frame, Neighborhood 3 × 3.. 15-7
Figure 15-2. Hexagonal Frame, Neighborhood 5 × 3.. 15-7

Tables
Table 2-1. Chapters about Specific Programming Environments.......................... 2-5

Table 7-1. IMAQ Vision Functions .. 7-2

Table 9-1. Bytes Per Pixel .. 9-4

Table 13-1. Prewitt Filters.. 13-10
Table 13-2. Sobel Filters .. 13-11

Contents

© National Instruments Corporation xvii ComponentWorks IMAQ Vision

Table 13-3. Gradient 5 × 5..13-12
Table 13-4. Gradient 7 × 7..13-12
Table 13-5. Laplacian 3 × 3 ..13-16
Table 13-6. Laplacian 5 × 5 ..13-16
Table 13-7. Laplacian 7 × 7 ..13-17
Table 13-8. Smoothing 3 × 3 ..13-19
Table 13-9. Smoothing 5 × 5 ..13-19
Table 13-10. Smoothing 7 × 7 ..13-20
Table 13-11. Gaussian 3 × 3 ...13-21
Table 13-12. Gaussian 5 × 5 ...13-21
Table 13-13. Gaussian 7 × 7 ...13-22

Table B-1. ComponentWorks Errors ..B-1
Table B-2. ComponentWorks IMAQ Errors ..B-1
Table B-3. IMAQ Errors ..B-3
Table B-4. Vision Errors ..B-5

© National Instruments Corporation xix ComponentWorks IMAQ Vision

About This Manual

The Getting Results with ComponentWorks IMAQ Vision manual contains
the information you need to get started with the ComponentWorks IMAQ
controls. ComponentWorks adds the instrumentation-specific tools for
acquiring, analyzing, and displaying data in Visual Basic, Visual C++,
Delphi, and other ActiveX control environments.

This manual contains step-by-step instructions for building applications
with ComponentWorks IMAQ Vision. You can modify these sample
applications to suit your needs. This manual does not show you how to use
every control or solve every possible programming problem. Use the online
reference for further, function-specific information.

To use this manual, you already should be familiar with one of the
supported programming environments and Windows 95/98 or
Windows NT.

Organization of This Manual
The Getting Results with ComponentWorks IMAQ Vision manual is
organized as follows.

• Chapter 1, Introduction to ComponentWorks IMAQ Vision, contains
an overview of ComponentWorks IMAQ Vision, lists the
ComponentWorks IMAQ Vision system requirements, describes how
to install the software, and presents basic information about
ComponentWorks ActiveX controls.

• Chapter 2, Getting Started with ComponentWorks, describes
approaches to help you get started using ComponentWorks IMAQ
Vision, depending on your application needs, your experience using
ActiveX controls in your particular programming environment, and
your specific goals in using ComponentWorks.

Part I, Building ComponentWorks IMAQ Vision Applications
This section describes how to use ActiveX controls in the most commonly
used programming environments—Visual Basic, Visual C++, and Borland
Delphi.

About This Manual

ComponentWorks IMAQ Vision xx © National Instruments Corporation

Part I, Building ComponentWorks IMAQ Vision Applications, contains the
following chapters.

• Chapter 3, Building ComponentWorks IMAQ Vision Applications
with Visual Basic, describes how you can use the ComponentWorks
controls with Visual Basic 5; insert the controls into the Visual Basic
environment, set their properties, and use their methods and events;
and perform these operations using ActiveX controls in general. This
chapter also outlines Visual Basic features that simplify working with
ActiveX controls.

• Chapter 4, Building ComponentWorks IMAQ Vision Applications
with Visual C++, describes how you can use ComponentWorks
controls with Visual C++, explains how to insert the controls into the
Visual C++ environment and create the necessary wrapper classes,
shows you how to create an application compatible with the
ComponentWorks controls using the Microsoft Foundation Classes
Application Wizard (MFC AppWizard) and how to build your
program using the ClassWizard with the controls, and discusses how
to perform these operations using ActiveX controls in general.

• Chapter 5, Building ComponentWorks IMAQ Vision Applications
with Delphi, describes how you can use ComponentWorks controls
with Delphi; insert the controls into the Delphi environment, set their
properties, and use their methods and events; and perform these
operations using ActiveX controls. This chapter also outlines Delphi
features that simplify working with ActiveX controls.

Part II, Using the ComponentWorks IMAQ Vision Controls
This section describes the basic operation of the ComponentWorks IMAQ
Vision controls. These chapters contain overviews of the controls,
describing their most commonly used properties, methods, and events. The
descriptions also include short code segments to illustrate programmatic
control and tutorials that lead you through building an application with the
controls.

Part II, Using the ComponentWorks IMAQ Vision Controls, contains the
following chapters.

• Chapter 6, Using the Viewer and Hardware Controls, describes how
you can use the IMAQ Viewer and Hardware controls to acquire and
display images; explains individual controls and their most commonly
used properties, methods, and events; and includes a tutorial with
step-by-step instructions for using the controls.

About This Manual

© National Instruments Corporation xxi ComponentWorks IMAQ Vision

• Chapter 7, Using the Vision Control, describes how you can use the
ComponentWorks IMAQ Vision control and its functions. You can
use the Vision control alone or with other controls to perform image
analysis, manipulation, and processing. Vision functions include
operations such as filtering, morphology, arithmetic, and
measurement.

• Chapter 8, Building Advanced IMAQ Vision Applications, discusses
how you can build applications using more advanced features of
ComponentWorks IMAQ Vision, including advanced image
acquisition techniques, image processing, and advanced user interface
options. It also explains error tracking, error checking, and debugging
techniques.

Part III, Introduction to Vision
This section presents the basics of computer-based vision applications.

Part III, Introduction to Vision, contains the following chapters.

• Chapter 9, Algorithms, Principles of Image Files, and Data Structures,
describes the algorithms and principles of image files and data
structures.

• Chapter 10, Tools and Utilities, describes the tools and utilities used in
IMAQ Vision.

• Chapter 11, Lookup Transformations, provides an overview of lookup
table transformations.

• Chapter 12, Operators, describes the arithmetic and logic operators
used in IMAQ Vision.

• Chapter 13, Spatial Filtering, provides an overview of the spatial
filters, including linear and nonlinear filters, used in IMAQ Vision.

• Chapter 14, Frequency Filtering, describes the frequency filters used
in IMAQ Vision.

• Chapter 15, Morphology Analysis, provides an overview of
morphology image analysis.

• Chapter 16, Quantitative Analysis, provides an overview of
quantitative image analysis. The quantitative analysis of an image
consists of obtaining densitometry and object measurements. Before
starting this analysis, it is necessary to calibrate the image spatial
dimensions and intensity scale to obtain measurements expressed in
real units.

About This Manual

ComponentWorks IMAQ Vision xxii © National Instruments Corporation

Appendices, Glossary, and Index
• Appendix A, Common Questions, contains answers to frequently

asked questions.

• Appendix B, Error Codes, lists the error codes returned by
ComponentWorks, the ComponentWorks IMAQ controls,
IMA Q hardware, and Vision.

• Appendix C, Distribution and Redistributable Files, contains
information about ComponentWorks IMAQ Vision redistributable
files and distributing applications that use ComponentWorks controls.

• Appendix D, Customer Communication, contains forms you can use to
request help from National Instruments or to comment on our products
and manuals.

• The Glossary contains an alphabetical list and description of terms
used in this manual, including acronyms, abbreviations, metric
prefixes, mnemonics, and symbols.

• The Index contains an alphabetical list of key terms and topics in this
manual, including the page where you can find each one.

Conventions Used in This Manual
The following conventions are used in this manual:

<> Angle brackets enclose the name of a key on the keyboard—for example,
<Shift>.

- A hyphen between two or more key names enclosed in angle brackets
denotes that you should simultaneously press the named keys—for
example, <Control-Alt-Delete>.

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options»Substitute
Fonts directs you to pull down the File menu, select the Page Setup item,
select Options, and finally select the Substitute Fonts options from the
last dialog box.

This icon to the left of bold italicized text denotes a note, which alerts you
to important information.s

bold Bold text denotes the names of menus, menu items, parameters, and dialog
box options.

bold italic Bold italic text denotes a note.

About This Manual

© National Instruments Corporation xxiii ComponentWorks IMAQ Vision

<Control> Key names are capitalized.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept.

monospace Text in this font denotes text or characters that you should literally enter
from the keyboard, sections of code, programming examples, and syntax
examples. This font is also used for the proper names of disk drives, paths,
directories, programs, subroutines, device names, functions, operations,
properties and methods, filenames and extensions, and for statements and
comments taken from programs.

paths Paths in this manual are denoted using backslashes (\) to separate drive
names, directories, folders, and files.

Related Documentation
The following documents contain information you might find useful as you
read this manual:

• ComponentWorks IMAQ Vision online reference (available
by selecting Programs»National Instruments ComponentWorks»
IMAQ Vision»ComponentWorks IMAQ Reference from the
Windows Start menu)

• Getting Results with ComponentWorks (If you have one of the
ComponentWorks development systems.)

• ComponentWorks online reference (If you have ComponentWorks
installed on your computer, you can access the online reference
by selecting Start»Programs»National Instruments
ComponentWorks»ComponentWorks Reference)

Customer Communication
National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with our
products, and we want to help if you have problems with them. To make it
easy for you to contact us, this manual contains comment and configuration
forms for you to complete. These forms are in Appendix D, Customer
Communication, at the end of this manual.

© National Instruments Corporation 1-1 ComponentWorks IMAQ Vision

1
Introduction to
ComponentWorks IMAQ Vision

This chapter contains an overview of ComponentWorks IMAQ Vision,
lists the ComponentWorks IMAQ Vision system requirements, describes
how to install the software, and presents basic information about
ComponentWorks ActiveX controls.

What Is ComponentWorks IMAQ Vision?
ComponentWorks IMAQ Vision is a collection of ActiveX controls for
developing machine-vision applications within any compatible ActiveX
control container. ActiveX controls also are known as OLE (Object
Linking and Embedding) controls, and the two terms can be used
interchangeably in this context. Use the online reference for specific
information about the properties, methods, and events of the individual
ActiveX controls. You can access this information by selecting
Programs»National Instruments ComponentWorks»IMAQ
Vision»ComponentWorks IMAQ Reference from the Windows
Start menu.

With ComponentWorks IMAQ Vision, you can acquire images from image
acquisition cards supported by the NI-IMAQ driver, display them in your
application, perform interactive viewer operations, and analyze your
images to extract information. The ComponentWorks IMAQ Vision
package contains the following components:

• IMAQ Hardware Control—ActiveX control for acquiring images from
devices supported by the NI-IMAQ driver.

• Viewer Control—ActiveX control for displaying images in your
application. With this control, you can interactively select a region of
interest, zoom and pan an image, and apply different color palettes.

• Vision Control—ActiveX control for analyzing and processing
images. Functions include caliper tools, pattern matching, histogram,
blobs analysis, and more.

Chapter 1 Introduction to ComponentWorks IMAQ Vision

ComponentWorks IMAQ Vision 1-2 © National Instruments Corporation

Note If you received the IMAQ Hardware control as part of NI-IMAQ and have not
purchased ComponentWorks IMAQ Vision, the Viewer and Vision controls are
in evaluation mode.

The ComponentWorks IMAQ Vision ActiveX controls are designed for use
in Visual Basic, a premier ActiveX control container application. Some
ComponentWorks features and utilities have been incorporated with the
Visual Basic user in mind. However, you can use ActiveX controls in other
applications that support them, including Visual C++ and Delphi.

System Requirements
To use the ComponentWorks IMAQ Vision ActiveX controls, your
computer must meet the following minimum requirements:

• Personal computer using at least a 33 MHz 80486 or higher
microprocessor (National Instruments recommends a 90 MHz
Pentium or higher microprocessor)

• Microsoft Windows 95/98 or Windows NT version 4.0

• VGA resolution (or higher) video adapter

• 32-bit ActiveX control container such as Visual Basic 4.0 or greater,
Visual C++ 4.x or greater, or Delphi

• NI-IMAQ 1.5 or greater for Windows 95/98 or Windows NT (if you
are using the IMAQ Hardware control)

• Minimum of 16 MB of memory

• Minimum of 10 MB of free hard disk space

• Microsoft-compatible mouse

Installing ComponentWorks IMAQ Vision
The ComponentWorks IMAQ Vision setup program installs the controls
through a process that lasts approximately five minutes. If you do not have
a compatible version of the NI-IMAQ driver software, you can install it
from the ComponentWorks IMAQ Vision CD.

Note To install ComponentWorks IMAQ Vision on a Windows NT system, you must be
logged in with Administrator privileges.

1. Make sure that your computer and monitor are turned on and that you
have installed Windows 95/98 or Windows NT.

Chapter 1 Introduction to ComponentWorks IMAQ Vision

© National Instruments Corporation 1-3 ComponentWorks IMAQ Vision

2. Insert the ComponentWorks IMAQ Vision CD in the CD drive of
your computer. From the CD startup screen, click on Install
ComponentWorks IMAQ Vision . If the CD startup screen does not
appear, use the Windows Explorer to run the SETUP.EXE program in
the \Setup directory on the CD.

3. Follow the instructions on the screen. The installer provides different
options for setting the directory in which ComponentWorks IMAQ
Vision is installed and choosing examples for different programming
environments. Use the default settings if you are unsure about which
settings to choose. If necessary, you can run the installer at a later time
to install additional components.

Installing From Floppy Disks
If your computer does not have a CD drive, you can copy the files to floppy
disks and install the controls from those disks, as described by the
following steps.

1. On another computer with a CD drive and disk drive, copy the files in
the individual subdirectories of the \Setup\disks directory on the
CD onto individual 3.5-inch floppy disks. The floppy disks should not
contain any directories and should be labeled disk1 , disk2 , and so
on, following the name of the source directories.

2. On the target computer, insert the floppy labeled disk1 and run the
setup.exe program from the floppy.

3. Follow the on-screen instructions to complete the installation.

Installed Files
The ComponentWorks IMAQ Vision setup program installs the following
groups of files on your hard disk.

• ActiveX controls, documentation, and other associated files

Directory: \Windows\System\

Files: cwimaq.ocx , cwimaq.dep , cwimaq.hlp , cwimaq.cnt

• Example programs and applications

Directory: \ComponentWorks\Samples\...

• Tutorials

Directory: \ComponentWorks\Tutorials-IMAQ\...

• Images

Directory: \ComponentWorks\Images

Chapter 1 Introduction to ComponentWorks IMAQ Vision

ComponentWorks IMAQ Vision 1-4 © National Instruments Corporation

• Miscellaneous files

Directory: \ComponentWorks\

Note You select the location of the \ComponentWorks\... directory during
installation.

About the ComponentWorks Controls
This section presents background information about the ComponentWorks
ActiveX controls. Make sure you understand these concepts before
continuing. You also should refer to your programming environment
documentation for more information about using ActiveX controls in
that environment.

Properties, Methods, and Events
ActiveX controls consist of three different parts—properties, methods, and
events—used to implement and program the controls.

Properties are the attributes of a control. These attributes describe the
current state of the control and affect the display and behavior of the
control. The values of the properties are stored in variables that are part of
the control.

Methods are functions defined as part of the control. Methods are called
with respect to a particular control and usually have some effect on the
control itself. The operation of most methods is affected by the current
property values of the control.

Events are notifications generated by a control in response to some
particular occurrence. Events are passed to the control container
application to execute a particular subroutine in the program (event
handler).

For example, the ComponentWorks IMAQ Hardware control has several
properties that determine how images are acquired. To configure your
image acquisition, set properties such as Interface , Channel , and
ColorMode .

The IMAQ Hardware control has high-level methods, or functions, that you
can invoke to perform specific operations. For example, use the Start
method to start acquiring images.

Chapter 1 Introduction to ComponentWorks IMAQ Vision

© National Instruments Corporation 1-5 ComponentWorks IMAQ Vision

The IMAQ Hardware control generates events when particular operations
occur. For example, when an image is acquired, the IMAQ control passes
an event to your program so you process the image in your application.

Note Use the online reference for specific information about the properties, methods,
and events of the ActiveX controls. You can access the online reference by
selecting Programs»National Instruments ComponentWorks»IMAQ
Vision»ComponentWorks IMAQ Reference from the Windows Start menu.

Object Hierarchy
The three parts of an ActiveX control—properties, methods, and
events—are stored in a software object. Because some ActiveX controls
are very complex and contain many properties, ActiveX controls are often
subdivided into different software objects, the sum of which make up the
ActiveX control. Each individual object in a control contains specific parts
(properties) and functionality (methods and events) of the ActiveX control.
The relationships among different objects of a control are maintained in an
object hierarchy. At the top of the hierarchy is the actual control itself.

This top-level object contains its own properties, methods, and events.
Some of the top-level object properties are actually references to other
objects that define specific parts of the control. Objects below the top-level
have their own methods and properties, and their properties can be
references to other objects. The number of objects in a hierarchy is not
limited.

Another advantage of subdividing controls is the re-use of different objects
between different controls. One object might be used at different places in
the same object hierarchy or in several different object hierarchies. For
example, both the Hardware and Viewer controls use the Image object.

Figure 1-1 shows the object hierarchy of the ComponentWorks IMAQ
control. The IMAQ object contains some of its own properties, such as
Name and Interface . It also contains the Images property, which is a
separate object. The Images object contains individual Image objects, each
describing one image stored by the IMAQ control. Each Image object has
properties, such as Height and Width , while the Images collection object
has a property Count . The Images collection object is a special type of
object referred to as a collection, which is described in the Collection
Objects section.

Chapter 1 Introduction to ComponentWorks IMAQ Vision

ComponentWorks IMAQ Vision 1-6 © National Instruments Corporation

Figure 1-1. IMAQ Control Object Hierarchy

Collection Objects
One object can contain several objects of the same type. For example, the
IMAQ object uses several Image objects, each representing one image
acquired by the control. The number of objects in the group of objects
might not be defined and might change while the program is running (that
is, you can add or remove images as part of your program). To handle these
groups of objects more easily, an object called a collection is created.

A collection is an object that contains or stores a varying number of objects
of the same type. You can consider a collection as an array of objects. The
name of a collection object is usually the plural of the name of the object
type contained within the collection. For example, a collection of Image
objects is referred to as Images. In the ComponentWorks software, the
terms object and collection are rarely used, only the type names Image and
Images are listed.

Each collection object contains an Item method that you can use to access
any particular object stored in the collection. Refer to Changing Properties
Programmatically later in this chapter for information about the Item
method and accessing particular objects stored in the collection.

IMAQ Control
Properties such as

Interface, ErrorEventMask

Images Collection
Property:

Count

Image Object
Properties such as

Height, Width

Chapter 1 Introduction to ComponentWorks IMAQ Vision

© National Instruments Corporation 1-7 ComponentWorks IMAQ Vision

Setting the Properties of an ActiveX Control
You can set the properties of an ActiveX control from its property pages or
from within your program.

Using Property Pages
Property pages are common throughout the Windows 95/98 and Windows
NT interface. When you want to change the appearance or options of a
particular object, right click on the object and select Properties. A property
page or tabbed dialog box appears with a variety of properties that you can
set for that particular object. You customize ActiveX controls in exactly the
same way. Once you place the control on a form in your programming
environment, right click on the control and select Properties to customize
the appearance and operation of the control.

Use the property pages to set the property values for each ActiveX control
while you are creating your application. The property values you select at
this point represent the state of the control at the beginning of your
application. You can change the property values from within your program
as shown in the next section, Changing Properties Programmatically.

In some programming environments (such as Visual Basic and Delphi), you
have two different property pages. The property page common to the
programming environment is called the default property sheet; it contains
the most basic properties of a control.

Your programming environment assigns default values for some of the
basic properties, such as the control name and the tab order. You must edit
these properties through the default property sheet.

Figure 1-2 shows the Visual Basic default property sheet for the IMAQ
control.

Chapter 1 Introduction to ComponentWorks IMAQ Vision

ComponentWorks IMAQ Vision 1-8 © National Instruments Corporation

Figure 1-2. Visual Basic Default Property Sheets

The second property sheet is called the custom property page. The layout
and functionality of the custom property pages vary for different controls.
Figure 1-3 shows the custom property page for the IMAQ control.

Figure 1-3. ComponentWorks Custom Property Pages

Chapter 1 Introduction to ComponentWorks IMAQ Vision

© National Instruments Corporation 1-9 ComponentWorks IMAQ Vision

Changing Properties Programmatically
You also can set or read the properties of your controls programmatically.
For example, if you want to change the color mode of an image acquisition
during program execution, change the ColorMode property of the IMAQ
control.

Note The exact syntax for reading and writing property values depends on the
programming language. Refer to the appropriate Building ComponentWorks
IMAQ Vision Applications chapter for information about using ComponentWorks
in your programming environment. Code examples are written in Visual Basic
syntax, which is similar to most implementations.

Each control you create in your program has a name (like a variable name)
which you use to reference the control in your program. You can set the
value of a property on a top-level object with the following syntax.

name.property = new_value

For example, you can change the ColorMode property of an IMAQ control
acquiring RGB images using the following line of code, where CWIMAQ1 is
the default name of the IMAQ control.

CWIMAQ1.ColorMode = cwimaqColorModeRGB

cwimaqColorModeRGB is a constant defined by the IMAQ control.

To access properties of sub-objects referenced by the top-level object, use
the control name, followed by the name of the sub-object and the property
name. For example, consider the following code for the Viewer control.

CWIMAQViewer1.Palette.Type = cwimaqPaletteGrayScale

In the above code, Palette is a property of the Viewer control and refers
to a Palette object. Type is one of several Palette properties.

You can retrieve the value of control properties from your program in the
same way. For example, you can print the value of the IMAQ ColorMode
property.

Print CWIMAQ1.ColorMode

You can display the palette used by the Viewer control in a Visual Basic text
box with the following code.

Text1.Text = CWIMAQViewer1.Palette.Type

Chapter 1 Introduction to ComponentWorks IMAQ Vision

ComponentWorks IMAQ Vision 1-10 © National Instruments Corporation

Item Method
To access an object or its properties in a collection, use the Item method
on the collection object. For example, set the border width of the second
image of an IMAQ control with the following code.

CWIMAQ1.Images.Item(2).BorderWidth = 5

The term CWIMAQ1.Images.Item(2) refers to the second Image object
in the Images collection of the IMAQ object. The parameter of the Item
method is an integer representing the (one-based) index of the object in the
collection.

Because the Item method is the most commonly used method on a
collection, it is referred to as the default method. Therefore, some
programming environments do not require you to specify the .Item

method. For example, in Visual Basic

CWIMAQ1.Images(2).BorderWidth = 5

is programmatically equivalent to

CWIMAQ1.Images.Item(2).BorderWidth = 5

Working with Control Methods
ActiveX controls and objects have their own methods, or functions, that
you can call from your program. Methods can have parameters that are
passed to the method and return values that pass information back to your
program.

For example, the ExportStyle method of the IMAQ control has a
required parameter—the file used to save the state of the control—that you
must include when you call the method.

CWIMAQ1.ExportStyle "c:\ContinuousIMAQ.cwx"

Methods can have required and optional parameters in some programming
environments, such as Visual Basic. You can omit these optional
parameters if you want to use their default values. Other programming
environments require all parameters to be passed explicitly.

Depending on your programming environment, parameters might be
enclosed in parentheses. If the function or method is not assigned a return
variable, Visual Basic does not use parentheses to pass parameters. The
Copy method in the Vision control has the following form when used with
the return variable status .

status = CWIMAQVision1.Copy(SourceImage, DestImage)

Chapter 1 Introduction to ComponentWorks IMAQ Vision

© National Instruments Corporation 1-11 ComponentWorks IMAQ Vision

Without the return value the syntax is

CWIMAQVision1.Copy SourceImage, DestImage

Developing Event Handler Routines
After configuring your controls on a form, you can create event handler
routines in your program to respond to events generated by the controls.
For example, the IMAQ control has an AcquiredImage event that fires
(occurs) when the acquired image is ready to be processed based on the
acquisition options you have configured in the control property pages.

You can configure the control to acquire single images or to acquire images
continuously. Each time an image is acquired, the image buffer is ready and
the AcquiredImage event is fired. In your AcquiredImage event
routine, you can write code to analyze the image data, store it to disk, and
display it.

To develop the event routine code, most programming environments
generate a skeleton function to handle each event. For information about
generating these function skeletons, refer to Chapter 3, Building
ComponentWorks IMAQ Vision Applications with Visual Basic, Chapter 4,
Building ComponentWorks IMAQ Vision Applications with Visual C++,
and Chapter 5, Building ComponentWorks IMAQ Vision Applications
with Delphi. For example, the Visual Basic environment generates the
following function skeleton into which you insert the functions to call when
the AcquiredImage event occurs.

Private Sub CWIMAQ1_AcquiredImage(ImageIndex As Variant)

End Sub

In most cases, the event also returns some data to the event handler that can
be used in your event handler routine, such as ImageIndex in the previous
example.

Learning the Properties, Methods, and Events
The ComponentWorks IMAQ online reference contains detailed
information about each control and its associated properties, methods, and
events. You can open the online reference from within most programming
environments by clicking on the Help button in the custom property pages,
or you can open it from the Windows Start menu by selecting
Programs»National Instruments ComponentWorks»IMAQ
Vision»ComponentWorks IMAQ Reference.

Chapter 1 Introduction to ComponentWorks IMAQ Vision

ComponentWorks IMAQ Vision 1-12 © National Instruments Corporation

Some programming environments have built-in mechanisms for detailing
the available properties, methods, and events for a particular control and
sometimes include automatic links to the help file.

© National Instruments Corporation 2-1 ComponentWorks IMAQ Vision

2
Getting Started with
ComponentWorks

This chapter describes approaches to help you get started using
ComponentWorks IMAQ Vision, depending on your application needs,
your experience using ActiveX controls in your particular programming
environment, and your specific goals in using ComponentWorks.

Install and Configure Driver Software
If you will be using the IMAQ Hardware control to acquire images from
your IMAQ cards, you must install and configure the NI-IMAQ driver
software before using this control.

The NI-IMAQ driver software performs the low-level calls to your
hardware. It is configured using a separate configuration utility provided
with the driver software. The configuration utility also provides parameters
or values you need to use in your controls.

Install the most current version of the NI-IMAQ driver. The
ComponentWorks controls might require features provided only in the
newest version of the driver. You can install a version of NI-IMAQ that is
compatible with the ComponentWorks IMAQ Vision controls from the CD
(\Drivers directory). You also can download the most current version of
the driver from the National Instruments Web or FTP site.

To run the installation and configuration programs, follow the directions
provided with the driver. The driver includes a readme file or printed
documentation that provides the latest information as well as operating
system details.

Chapter 2 Getting Started with ComponentWorks

ComponentWorks IMAQ Vision 2-2 © National Instruments Corporation

Explore the ComponentWorks IMAQ Vision
Documentation

The printed and online manuals contain the information necessary to
learn and use the ComponentWorks IMAQ Vision controls to their full
capabilities. The manuals are divided into different sections. Each section
addresses a specific step on the learning curve.

Use the Getting Results with ComponentWorks IMAQ Vision manual to
learn how to develop simple applications with the machine vision controls.
The manual contains information you can use in specific circumstances,
such as debugging particular problems.

After you understand the operation and organization of the controls, use the
ComponentWorks IMAQ Vision online reference to obtain information
about specific features of each control.

Getting Results with ComponentWorks IMAQ Vision Manual
The Getting Results with ComponentWorks IMAQ Vision manual contains
three different parts.

Part I, Building ComponentWorks IMAQ Vision Applications—These
chapters describe how to use ActiveX controls in the most commonly used
programming environments—Visual Basic, Visual C++, and Borland
Delphi.

If you are familiar with using ActiveX controls in these environments,
you should not need to read these chapters. If you are using the controls
in another environment, consult your programming environment
documentation for information about using ActiveX controls. You can
check the ComponentWorks Support Web site for information about
additional environments.

Part II, Using the ComponentWorks IMAQ Vision Controls—These
chapters describe the basic operation of the ComponentWorks IMAQ
Vision controls. Each chapter contains an overview of a control, describing
its most commonly used properties, methods, and events. The description
also includes short code segments to illustrate programmatic control and
tutorials that lead you through building an application with the control.

Part III, Introduction to Vision—These chapters present the basics of
computer-based vision applications.

Chapter 2 Getting Started with ComponentWorks

© National Instruments Corporation 2-3 ComponentWorks IMAQ Vision

ComponentWorks Online Reference
The ComponentWorks IMAQ Vision online reference includes complete
reference information for all controls—all properties, methods, and events
for every control—as well as the text from Getting Results with
ComponentWorks IMAQ Vision.

To use the online reference efficiently, you should understand the material
presented in the Getting Results with ComponentWorks IMAQ Vision
manual about using ComponentWorks ActiveX controls.

After going through this manual and its tutorials, use the online reference
as your main source of information. Refer to it when you need specific
information about a particular feature in ComponentWorks.

Accessing the Online Reference
You can open the online reference from the Windows Start
menu (Programs»National Instruments ComponentWorks»IMAQ
Vision»ComponentWorks IMAQ Reference). The reference opens to
the main contents page. From the contents page, you can browse the
contents of the online reference or search for a particular topic.

Most programming environments support some type of automatic link to
the online reference (help) file from within their environment, often the
<F1> key. Try selecting the control on a form or placing the cursor in code
specific to a control and pressing <F1> to evoke the online reference.

In most environments, the property pages for the ComponentWorks
controls include a Help button that provides information about the property
pages.

Finding Specific Information
To find information about a particular control or feature of a control, select
the Index tab under the Help Topics page. Enter the name of the control,
property, method, or event. Control names always begin with CW (for
example, CWIMAQ). Property, method, and event names are identical to
those used in the code (for example, Interface , Start , Images).

One group of objects that frequently generates questions are the Collection
objects. Search the online reference for Collections and the Item
method for more information. You also can find information about
collection objects in the Collection Objects section of Chapter 1,
Introduction to ComponentWorks IMAQ Vision.

Chapter 2 Getting Started with ComponentWorks

ComponentWorks IMAQ Vision 2-4 © National Instruments Corporation

Become Familiar with the Examples Structure
The examples installed with ComponentWorks IMAQ Vision show you
how to use the machine vision controls in applications. You can use these
examples as a reference to become more familiar with the use of the
controls, or you can build your application by expanding one of the
examples.

When you install ComponentWorks IMAQ vision, you can install examples
for selected programming environments. The examples are located in the
\ComponentWorks\samples directory, organized by programming
environment (\Visual Basic , \Visual C++, and so on), and grouped in
the IMAQ folder under each language. Within these directories, the
examples are further subdivided by functionality.

The online reference includes a searchable list of all the examples included
with ComponentWorks IMAQ Vision. Select Examples to see the list of
examples.

Develop Your Application
Depending on your experience with your programming environment,
ActiveX controls, and ComponentWorks, you can get started using
ComponentWorks IMAQ Vision in some of the following ways.

Are you new to your particular programming environment?

Spend some time using and programming in your development
environment. Check the documentation that accompanies your
programming environment for getting started information or tutorials,
especially tutorials that describe using ActiveX controls in the
environment. If you have specific questions, search the online
documentation of your development environment. After becoming familiar
with the programming environment, continue with the following steps.

Are you new to using ActiveX controls or do you need to learn how to
use ActiveX controls in a specific programming environment?

Make sure you have read and understand the information about ActiveX
controls in Chapter 1, Introduction to ComponentWorks IMAQ Vision, and
the appropriate chapter about your specific programming environment.
Refer to Table 2-1 to find out which chapter you should read for your
specific programming environment.

Chapter 2 Getting Started with ComponentWorks

© National Instruments Corporation 2-5 ComponentWorks IMAQ Vision

If you use Borland C++ Builder, most of Chapter 5, Building
ComponentWorks IMAQ Vision Applications with Delphi, pertains to you.
If you use another programming environment, see the ComponentWorks
Support Web site (www.natinst.com/support) for current information
about particular environments.

Regardless of the programming environment you use, consult its
documentation for information about using ActiveX controls. After
becoming familiar with using ActiveX controls in your environment,
continue with the following steps.

Are you familiar with ActiveX controls but need to learn
ComponentWorks controls, hierarchies, and features?

If you are familiar with using ActiveX controls, including collection
objects and the Item method, read the chapters pertaining to the controls
you want to use. Part II, Using the ComponentWorks IMAQ Vision
Controls, provides basic information about each of the IMAQ vision
controls and describes their most commonly used properties, methods, and
events. The chapters also offer tutorials to help you become more familiar
with using the controls. Solutions to each tutorial are installed with your
software (\ComponentWorks\Tutorials-IMAQ) .

After becoming familiar with the information in these chapters, try building
applications with the ComponentWorks controls. You can find detailed
information about all properties, methods, and events for every control in
the online reference.

Do you want to develop applications quickly or modify existing
examples?

If you are familiar with using ActiveX controls, including collections and
the Item method, and have some experience using ComponentWorks or

Table 2-1. Chapters about Specific Programming Environments

Environment Read This Chapter

Microsoft Visual Basic Chapter 3, Building ComponentWorks
IMAQ Vision Applications with Visual Basic

Microsoft Visual C++ Chapter 4, Building ComponentWorks
IMAQ Vision Applications with Visual C++

Borland Delphi Chapter 5, Building ComponentWorks
IMAQ Vision Applications with Delphi

Chapter 2 Getting Started with ComponentWorks

ComponentWorks IMAQ Vision 2-6 © National Instruments Corporation

other National Instruments products, you can get started more quickly by
looking at the examples.

Most examples demonstrate how to perform operations with a particular
control. Generally, the examples avoid presenting complex operations on
more than one control. To become familiar with a control, look at the
example for that control. Then, you can combine different programming
concepts from the different controls in your application.

The examples include comments to provide more information about the
steps performed in the example. The examples avoid performing complex
programming tasks specific to one programming environment; instead,
they focus on showing you how to perform operations using the
ComponentWorks controls. When developing applications with ActiveX
controls, you do a considerable amount of programming by setting
properties in the property pages. Check the value of the control properties
in the examples because the values greatly affect the operation of the
example program. In some cases, the actual source code used by an
example might not differ from other examples; however, the values of the
properties change the example significantly.

Seek Information from Additional Sources
After working with the ComponentWorks controls, you might need to
consult other sources if you have questions. The following sources can
provide you with more specific information.

• Getting Results with ComponentWorks IMAQ Vision
Appendices—The appendices include common questions and error
descriptions for the IMAQ controls.

• ComponentWorks IMAQ Vision Online Reference—The online
reference includes the complete reference documentation and text of
this manual. If you cannot find a particular topic in the index, choose
the Find tab in the Help Topics page and search the complete text of
the online reference.

• ComponentWorks Support Web Site—The ComponentWorks Support
Web site, as part of the National Instruments Support Web site
(www.natinst.com/support), contains support information,
updated continually. You can find application and support notes and
information about using ComponentWorks in additional programming
environments. The Web site also contains the KnowledeBase, a
searchable database containing thousands of entries answering
common questions related to the use of ComponentWorks and other
National Instruments products.

© National Instruments Corporation I-1 ComponentWorks IMAQ Vision

Part I

Building ComponentWorks IMAQ Vision
Applications

This section describes how to use ActiveX controls in the most commonly
used programming environments—Visual Basic, Visual C++, and Borland
Delphi.

If you are familiar with using ActiveX controls in these environments, you
should not need to read these chapters. If you are using the controls in
another environment, consult your programming environment
documentation for information about using ActiveX controls. You can
check the ComponentWorks Support Web site for information about
additional environments.

Part I, Building ComponentWorks IMAQ Vision Applications, contains the
following chapters.

• Chapter 3, Building ComponentWorks IMAQ Vision Applications
with Visual Basic, describes how you can use the ComponentWorks
controls with Visual Basic 5; insert the controls into the Visual Basic
environment, set their properties, and use their methods and events;
and perform these operations using ActiveX controls in general. This
chapter also outlines Visual Basic features that simplify working with
ActiveX controls.

• Chapter 4, Building ComponentWorks IMAQ Vision Applications
with Visual C++, describes how you can use ComponentWorks
controls with Visual C++, explains how to insert the controls into the
Visual C++ environment and create the necessary wrapper classes,
shows you how to create an application compatible with the
ComponentWorks controls using the Microsoft Foundation Classes
Application Wizard (MFC AppWizard) and how to build your

Part I Building ComponentWorks IMAQ Vision Applications

ComponentWorks IMAQ Vision I-2 © National Instruments Corporation

program using the ClassWizard with the controls, and discusses how
to perform these operations using ActiveX controls in general.

• Chapter 5, Building ComponentWorks IMAQ Vision Applications
with Delphi, describes how you can use ComponentWorks controls
with Delphi; insert the controls into the Delphi environment, set their
properties, and use their methods and events; and perform these
operations using ActiveX controls. This chapter also outlines Delphi
features that simplify working with ActiveX controls.

© National Instruments Corporation 3-1 ComponentWorks IMAQ Vision

3
Building ComponentWorks
IMAQ Vision Applications
with Visual Basic

This chapter describes how you can use the ComponentWorks controls
with Visual Basic 5; insert the controls into the Visual Basic environment,
set their properties, and use their methods and events; and perform these
operations using ActiveX controls in general. This chapter also outlines
Visual Basic features that simplify working with ActiveX controls.

Note The descriptions and figures in this chapter apply specifically to the Visual Basic 5
environment.

Developing Visual Basic Applications
The following procedure explains how you can start developing Visual
Basic applications with ComponentWorks.

1. Select the type of application you want to build. Initially select a
Standard EXE for your application type.

2. Design the form. A form is a window or area on the screen on which
you place controls and indicators to create the user interface for your
program. The toolbox in Visual Basic contains all of the controls
available for developing the form.

3. After placing each control on the form, configure the properties of the
control using the default and custom property pages.

Each control on the form has associated code (event handler routines)
in your Visual Basic program that automatically executes when the
user operates that control.

4. To create this code, double click on the control while editing your
application and the Visual Basic code editor opens to a default event
handler routine.

Chapter 3 Building ComponentWorks IMAQ Vision Applications with Visual Basic

ComponentWorks IMAQ Vision 3-2 © National Instruments Corporation

Loading ComponentWorks IMAQ Vision Controls into the Toolbox
Before building an application using ComponentWorks controls, you must
add them to the Visual Basic toolbox. Use the following procedure to add
ComponentWorks controls to the project toolbox.

1. In a new Visual Basic project, right click on the toolbox and select
Components.

2. Place a checkmark in the box next to National Instruments CW
IMAQ .

If the ComponentWorks controls are not in the list, select the control
files from the \Windows\System(32) directory by pressing the
Browse button.

If you need to use the ComponentWorks controls in several projects, create
a new default project in Visual Basic 5 to include the IMAQ Vision controls
and serve as a template.

1. Create a new Standard EXE application in the Visual Basic
environment.

2. Add the ComponentWorks IMAQ controls to the project toolbox as
described in the preceding procedure.

3. Save the form and project in the \Template\Projects directory
under your Visual Basic directory.

4. Give the form and project a descriptive name, such as CWForm and
CWProject .

After creating this default project, you have a new option, CWProject , that
includes the ComponentWorks IMAQ controls in the New Project dialog
by default.

Building the User Interface Using ComponentWorks
After you add the ComponentWorks IMAQ controls to the Visual Basic
toolbox, use them to create the front panel of your application. To place the
controls on the form, select the corresponding icon in the toolbox and click
and drag the mouse on the form. This step creates the corresponding
control. After you create controls, move and size them by using the mouse.
To move a control, click and hold the mouse on the control and drag the
control to the desired location. To resize a control, select the control and
place the mouse pointer on one of the hot spots on the border of the control.
Drag the border to the desired size. Notice that you cannot resize the IMAQ
Hardware or Vision icons after placing them on the form. They also are not
visible during run time.

Chapter 3 Building ComponentWorks IMAQ Vision Applications with Visual Basic

© National Instruments Corporation 3-3 ComponentWorks IMAQ Vision

Once ActiveX controls are placed on the form, you can edit their properties
using their property sheets. You can also edit the properties from within the
Visual Basic program at run time.

Using Property Pages
After placing a control on a Visual Basic form, configure the control by
setting its properties in the Visual Basic property pages (see Figure 3-1)
and ComponentWorks custom control property pages (see Figure 3-2).
Visual Basic assigns some default properties, such as the control name and
the tab order. When you create the control, you can edit these stock
properties in the Visual Basic default property sheet. To access this sheet,
select a control and select Properties Window from the View menu, or
press <F4>. To edit a property, highlight the property value on the right
side of the property sheet and type in the new value or select it from a pull
down menu. The most important property in the default property sheet is
Name, which is used to reference the control in the program.

Figure 3-1. Visual Basic Property Pages

Edit all other properties of an ActiveX control in the custom property
sheets. To open the custom property sheets, right click on the control on the
form and select Properties or select the controls and press <Shift-F4>.

Chapter 3 Building ComponentWorks IMAQ Vision Applications with Visual Basic

ComponentWorks IMAQ Vision 3-4 © National Instruments Corporation

Figure 3-2. ComponentWorks Custom Property Pages

Using Your Program to Edit Properties
You can set and read the properties of your controls programmatically in
Visual Basic. Use the name of the control with the name of the property as
you would with any other variable in Visual Basic. The syntax for setting a
property in Visual Basic is name.property = new value .

For example, you can change the ColorMode property of an IMAQ control
acquiring RGB images using the following line of code, where CWIMAQ1 is
the default name of the IMAQ control.

CWIMAQ1.ColorMode = cwimaqColorModeRGB

cwimaqColorModeRGB is a constant defined by the IMAQ control.

To access properties of sub-objects referenced by the top-level object, use
the control name, followed by the name of the sub-object and the property
name. For example, consider the following code for the Viewer control.

CWIMAQViewer1.Palette.Type = cwimaqPaletteGrayScale

In the above code, Palette is a property of the Viewer control and refers
to a Palette object. Type is one of several Palette properties.

You can retrieve the value of control properties from your program in the
same way. For example, you can print the value of the IMAQ ColorMode
property.

Print CWIMAQ1.ColorMode

Chapter 3 Building ComponentWorks IMAQ Vision Applications with Visual Basic

© National Instruments Corporation 3-5 ComponentWorks IMAQ Vision

You can display the palette used by the Viewer control in a Visual Basic text
box with the following code.

Text1.Text = CWIMAQViewer1.Palette.Type

Working with Control Methods
Calling the methods of an ActiveX control in Visual Basic is similar to
working with the control properties. To call a method, add the name of the
method after the name of the control (and sub-object if applicable). For
example, you can call the Start method on the IMAQ Hardware control.

CWIMAQ1.Start

Methods can have parameters that you pass to the method and return values
that pass information back to your program. For example, the
ExportStyle method of the IMAQ control has a required parameter—the
file used to save the state of the control—that you must include when you
call the method.

CWIMAQ1.ExportStyle "c:\ContinuousIMAQ.cwx"

In Visual Basic if you call a method without assigning a return variable, any
parameters passed to the method are listed after the method name,
separated by commas without parentheses.

CWIMAQVision1.Copy SourceImage, DestImage

If you assign the return value of a method to a return variable, enclose the
parameters in parentheses.

status = CWIMAQVision1.Copy (SourceImage, DestImage)

You can use the Visual Basic Object Browser to add method calls to your
program.

Developing Control Event Routines
After you configure your controls in the forms editor, write Visual Basic
code to respond to events on the controls. The controls generate these
events in response to user interactions with the controls or in response to
some other occurrence in the control. To develop the event handler routine
code for an ActiveX control in Visual Basic, double click on the control to
open the code editor, which automatically generates a default event handler
routine for the control. The event handler routine skeleton includes the
control name, the default event, and any parameters that are passed
to the event handler routine. The following code is an example of

Chapter 3 Building ComponentWorks IMAQ Vision Applications with Visual Basic

ComponentWorks IMAQ Vision 3-6 © National Instruments Corporation

the event routine generated for the IMAQ Hardware control. This event
routine (AcquiredImage) is called when a new image is acquired.

Private Sub CWIMAQ1_AcquiredImage(ImageIndex As Variant)

End Sub

To generate an event handler for a different event of the same control,
double click the control to generate the default handler, and select the
desired event from the right pull-down menu in the code window, as shown
in the following illustration.

Figure 3-3. Selecting Events in the Code Window

Use the left pull-down menu in the code window to change to another
control without going back to the form window.

Using the Object Browser to Build Code in Visual Basic
Visual Basic includes a tool called the Object Browser that you can use to
work with ActiveX controls while creating your program. The Object
Browser displays a detailed list of the available properties, methods, and
events for a particular control. It presents a three-step hierarchical view of
controls or libraries and their properties, methods, functions, and events. To
open the Object Browser, select Object Browser from the View menu, or
press <F2>.

In the Object Browser, use the top left pull-down menu to select a particular
ActiveX control file. You can select any currently loaded control or driver.
The Classes list on the left side of the Object Browser displays a list of

Chapter 3 Building ComponentWorks IMAQ Vision Applications with Visual Basic

© National Instruments Corporation 3-7 ComponentWorks IMAQ Vision

controls, objects, and function classes available in the selected control file
or driver.

Figure 3-4 shows the ComponentWorks IMAQ control file selected in the
Object Browser. The Classes list shows all the IMAQ controls and
associated object types. Each time you select an item from the Classes list
in the Object Browser, the Members list on the right side displays the
properties, methods, and events for the selected object or class.

Figure 3-4. Viewing CWIMAQ in the Object Browser

When you select an item in the Members list, the prototype and description
of the selected property, method, or function are displayed at the bottom of
the Object Browser dialog box. In Figure 3-4, the CWIMAQ control is
selected from the Classes list. For this control, the AcquireImage method
is selected and the prototype and description of the method appear in the
dialog box. The prototype of a method or function lists all parameters,
required and optional.

When you select a property of a control or object in the Members list which
is an object in itself, the description of the property includes a reference to
the object type of the property. For example, Figure 3-5 shows the
CWIMAQ control selected in the Classes list and its Images property
selected in the Members list.

Chapter 3 Building ComponentWorks IMAQ Vision Applications with Visual Basic

ComponentWorks IMAQ Vision 3-8 © National Instruments Corporation

Figure 3-5. Viewing CWIMAQ in the Object Browser

The Images object on the CWIMAQ control is a separate object, so the
description at the bottom of the dialog window lists the Images property as
CWIMAQImages. CWIMAQImages is the type name of the Images
collection object, and you can select CWIMAQImages in the Classes list to
see its properties and methods. Move from one level of the object hierarchy
to the next level using the Object Browser to explore the structure of
different controls.

The question mark (?) button at the top of the Object Browser opens the
help file to a description of the currently selected item. To find more
information about the CWIMAQ control, select the control in the window
and press the ? button.

Pasting Code into Your Program
If you open the Object Browser from the Visual Basic code editor, you can
copy the name or prototype of a selected property, method, or function to
the clipboard and then paste it into your program. To perform this task,
select the desired Member item in the Object Browser. Press the Copy to
Clipboard button at the top of the Object Browser or highlight the
prototype at the bottom and press <Ctrl-C> to copy it to the clipboard. Paste
it into your code window by selecting Paste from the Edit menu or pressing
<Ctrl-V>.

Chapter 3 Building ComponentWorks IMAQ Vision Applications with Visual Basic

© National Instruments Corporation 3-9 ComponentWorks IMAQ Vision

Use this method repeatedly to build a more complex reference to a property
of a lower-level object in the object hierarchy. For example, you can create
a reference to

CWIMAQ1.Images.Item(1).Type

by typing in the name of the control (CWIMAQ1) and then using the Object
Browser to add each section of the property reference.

Adding Code Using Visual Basic Code Completion
Visual Basic 5 supports automatic code completion in the code editor. As
you enter the name of a control, the code editor prompts you with the names
of all appropriate properties and methods. Try placing a control on the form
and then entering its name in the code editor. After typing the name, add a
period as the delimiter to the property or method of the control. As soon as
you type the period, Visual Basic drops down a menu of available
properties and methods, as shown in Figure 3-6.

Figure 3-6. Visual Basic 5 Code Completion

You can select from the list or properties and events by scrolling through
the list and selecting one or by typing in the first few letters of the desired
item. Once you have selected the correct item, type the next logical
character such as a period, space, equal sign, or carriage return to enter the
selected item in your code and continue editing the code.

Chapter 3 Building ComponentWorks IMAQ Vision Applications with Visual Basic

ComponentWorks IMAQ Vision 3-10 © National Instruments Corporation

Creating Standalone Objects
Standalone objects are ActiveX objects created at run time, so you do not
place them on a form. They are used as parameters to many IMAQ Vision
functions. ComponentWorks uses two kinds of standalone objects: Images
and Reports. Standalone Image objects are identical to the Image objects
found on the CWIMAQ and CWIMAQViewer controls.

Standalone Image objects can store temporary results of image processing
functions that you do not want to display. Standalone Report objects are
arrays of data used as inputs and outputs to IMAQ Vision functions.

You can create standalone objects in Visual Basic using Create methods
on the CWIMAQVision control, such as CreateCWIMAQImage ,
CreateCWIMAQCaliperReport , and CreateCWIMAQShapeReport .

' Create a standalone object

Dim Image as New CWIMAQImage

Standalone objects are automatically deallocated when the variable goes
out of scope.

© National Instruments Corporation 4-1 ComponentWorks IMAQ Vision

4
Building ComponentWorks
IMAQ Vision Applications
with Visual C++

This chapter describes how you can use ComponentWorks controls with
Visual C++, explains how to insert the controls into the Visual C++
environment and create the necessary wrapper classes, shows you how to
create an application compatible with the ComponentWorks controls using
the Microsoft Foundation Classes Application Wizard (MFC AppWizard)
and how to build your program using the ClassWizard with the controls,
and how to perform these operations using ActiveX controls in general.

Note The descriptions and figures in this chapter apply specifically to the Visual C++ 5
environment.

Developing Visual C++ Applications
The following procedure explains how you can start developing Visual
C++ applications with ComponentWorks.

1. Create a new workspace or project in Visual C++.

2. To create a project compatible with the ComponentWorks ActiveX
controls, use the Visual C++ MFC AppWizard to create a skeleton
project and program.

3. After building the skeleton project, add the ComponentWorks controls
to the controls toolbar. From the toolbar, you can add the controls to
the application itself.

4. After adding a control to your application, configure its properties
using its property pages.

5. While developing your program code, use the control properties and
methods and create event handlers to process different events
generated by the control.

Create the necessary code for these different operations using the
ClassWizard in the Visual C++ environment.

Chapter 4 Building ComponentWorks IMAQ Vision Applications with Visual C++

ComponentWorks IMAQ Vision 4-2 © National Instruments Corporation

Creating Your Application
When developing new applications, use the MFC AppWizard to create new
project workspace so the project is compatible with ActiveX controls. The
MFC AppWizard creates the project skeleton and adds the necessary code
that enables you to add ActiveX controls to your program.

1. Create a new project by selecting New from the File menu. The New
dialog box opens (see Figure 4-1).

Figure 4-1. New Dialog Box

2. On the Projects tab, select the MFC AppWizard (exe) and enter the
project name and the directory.

3. Click on OK to setup your project.

Complete the next series of dialog windows in which the MFC
AppWizard prompts you for different project options. If you are a new
Visual C++ or the MFC AppWizard user, accept the default options
unless otherwise stated in this documentation.

4. In the first step, select the type of application you want to build.
For this example, select a dialog-based application, as shown in
Figure 4-2, to make it easier to become familiar with the
ComponentWorks controls.

Chapter 4 Building ComponentWorks IMAQ Vision Applications with Visual C++

© National Instruments Corporation 4-3 ComponentWorks IMAQ Vision

Figure 4-2. MFC AppWizard—Step 1

5. Click on the Next> button to continue.

6. Enable ActiveX controls support. If you have selected a Dialog based
application, step two of the MFC AppWizard enables ActiveX
Controls support by default.

7. Continue selecting desired options through the remainder of the MFC
AppWizard. When you finish the MFC AppWizard, it builds a project
and program skeleton according to the options you specified. The
skeleton includes several classes, resources, and files, all of which can
be accessed from the Visual C++ development environment.

8. Use the Workspace window, which you can select from the View
menu, to see the different components in your project.

Adding ComponentWorks Controls to the Visual C++ Controls Toolbar
Before building an application using the ComponentWorks IMAQ
controls, you must load the controls into the Controls toolbar in Visual C++
from the Component Gallery in the Visual C++ environment. When you
load the controls using the Component Gallery, a set of C++ wrapper
classes is generated automatically in your project. You must have wrapper
classes to work with the ComponentWorks controls.

Chapter 4 Building ComponentWorks IMAQ Vision Applications with Visual C++

ComponentWorks IMAQ Vision 4-4 © National Instruments Corporation

The Controls toolbar is visible in the Visual C++ environment only when
the Visual C++ dialog editor is active. Use the following procedure to open
the dialog editor.

1. Open the Workspace window by selecting Workspace from the View
menu.

2. Select the Resource View (second tab along the bottom of the
Workspace window).

3. Expand the resource tree and double click on one of the Dialog entries.

4. If necessary, right click on any existing toolbar and enable the Controls
option.

By adding controls to your project, you create the necessary wrapper
classes for the control in your project and add the control to the toolbox.
Use the following procedure to add new controls to the toolbar.

1. Select Project»Add To Project»Components and Controls and, in
the following dialog, double click on Registered ActiveX Controls.

2. Select one of the ComponentWorks IMAQ controls and click the
Insert button.

3. Click on OK in the following dialog windows. Repeat Steps 1 through
3 to add other controls.

4. When you have inserted the controls, click Close in the Components
and Controls Gallery.

Building the User Interface Using ComponentWorks
After adding the controls to the Controls toolbar, use the controls in the
design of the application user interface. Place the controls on the dialog
form using the dialog editor. You can size and move individual controls in
the form to customize the interface. Use the custom property sheets to
configure control representation on the user interface and control behavior
at run time.

To add ComponentWorks controls to the form, open the dialog editor by
selecting the dialog form from the Resource View of the Workspace
window. If the Controls toolbar is not displayed in the dialog editor, open it
by right clicking on any existing toolbar and enabling the Controls option.

To place a ComponentWorks control on the dialog form, select the desired
control in the Controls toolbar and click and drag the mouse on the form to
create the control. After placing the controls, move and resize them on the
form as needed.

Chapter 4 Building ComponentWorks IMAQ Vision Applications with Visual C++

© National Instruments Corporation 4-5 ComponentWorks IMAQ Vision

After you add a ComponentWorks control to a dialog form, configure the
default properties of the control by right clicking the control and selecting
Properties to display its custom property sheets. Figure 4-3 shows the
CWIMAQ control property pages.

Figure 4-3. CWIMAQ Control Property Sheets

So you can see immediately how different properties affect the control,
a separate window displays a sample copy of the control that reflects the
property changes as you make them in the property sheets.

Programming with the ComponentWorks Controls
To program with ComponentWorks controls, use the properties, methods,
and events of the controls as defined by the wrapper classes in Visual C++.

Before you can use the properties or methods of a control in your Visual
C++ program, assign a member variable name to the control. This member
variable becomes a variable of the application dialog class in your project.

To create a member variable for a control on the dialog form, right click on
the control and select ClassWizard. In the MFC Class Wizard window,
activate the Member Variables tab, as shown in Figure 4-4.

Select the new control in the Control IDs field and press the Add Variable
button. In the dialog window that appears, complete the member variable
name and press OK . Most member variable names start with m_, and you
should adhere to this convention. After you create the member variable, use
it to access a control from your source code. Figure 4-4 shows the MFC
Class Wizard after member variables have been added for each of the
IMAQ controls.

Chapter 4 Building ComponentWorks IMAQ Vision Applications with Visual C++

ComponentWorks IMAQ Vision 4-6 © National Instruments Corporation

Figure 4-4. MFC ClassWizard—Member Variable Tab

Using Properties
Unlike Visual Basic, you do not read or set the properties of
ComponentWorks controls directly in Visual C++. Instead, the wrapper
class of each control contains functions to read and write the value of each
property. These functions are named starting with either Get or Set
followed by the name of the property. For example, to set the
BorderWidth property of a viewer, use the SetBorderWidth function of
the wrapper class for the Viewer control. In the source code, the function
call is preceded by the member variable name of the control to which it
applies.

m_CWIMAQViewer1.SetBorderWidth(5);

Some values passed to properties need to be of variant type. Convert the
value passed to the property to a variant using COleVariant() . For
example, set the ZoomScale property of a Viewer control.

m_CWIMAQViewer1.SetZoomScale(COleVariant(1.0));

You can view the names of all the property functions (and other functions)
for a given control in the ClassView of the Workspace window. In the
Workspace window, select ClassView and then the control for which you

Chapter 4 Building ComponentWorks IMAQ Vision Applications with Visual C++

© National Instruments Corporation 4-7 ComponentWorks IMAQ Vision

want to view property functions and methods. Figure 4-5 shows the
functions for the IMAQ Viewer object as listed in the Workspace. These are
created automatically when you add a control to the Controls toolbar in you
project.

Figure 4-5. Viewing Property Functions and Methods in the Workspace Window

If you need to access a property of a control which is in itself another
object, use the appropriate property function to return the sub-object of the
control. Make a call to access the property of the sub-object. Include the
header file in your program for any objects used. For example, use the
following code to set the border width of the image contained in the Viewer
control.

#include "_cwimaqimage.h"

C_CWIMAQImage Image;

Image = m_CWIMAQViewer1.GetImage();

Image.SetBorderWidth(5);

You can chain this operation into one function call without having to
declare another variable.

#include "_cwimaqimage.h"

m_CWIMAQViewer1.GetImage().SetBorderWidth(5);

Chapter 4 Building ComponentWorks IMAQ Vision Applications with Visual C++

ComponentWorks IMAQ Vision 4-8 © National Instruments Corporation

If you need to access an object in a collection property, use the Item
method with the index of the object. Remember to include the header file
for the collection object. For example, to set the border width of the first
image on an IMAQ control, use the following code.

#include "_cwimaqimage.h"

#include "cwimaqimages.h"

m_CWIMAQ1.GetImages().Item(COleVariant(1.0)).

SetBorderWidth(5);

Using Methods
Use the control wrapper classes to extract all methods of the control. To call
a method, append the method name to the member variable name and pass
the appropriate parameters. If the method does not require parameters, use
a pair of empty parentheses.

m_CWIMAQ1.Start();

Most methods take some parameters as variants. You must convert any such
parameter to a variant if you have not already done so. You can convert
most scalar values to variants with COleVariant() . For example, the Add
method of the Vision control requires a scalar value as variant.

#include "_cwimaqimage.h"

C_CWIMAQImage Image;

Image = m_CWIMAQViewer1.GetImage();

m_CWIMAQVision1.Add(Image, COleVariant(128.0), Image);

Note Consult Visual C++ documentation for more information about variant data types.

If you need to call a method on a sub-object of a control, follow the
conventions outlined in the Using Properties section earlier in this chapter.
For example, to call GetRegions on one particular region of the viewer,
use the following line of code.

#include "cwimaqregions.h"

#include "cwimaqregion.h"

m_CWIMAQViewer1.GetRegions().Item(COleVariant(1.0)).

Move(10,-10);

Chapter 4 Building ComponentWorks IMAQ Vision Applications with Visual C++

© National Instruments Corporation 4-9 ComponentWorks IMAQ Vision

Using Events
After placing a control on your form, you can start defining event handler
functions for the control in your code. Events generate automatically at run
time when different controls respond to conditions, such as a user clicking
on the viewer on the form or the image acquisition process acquiring an
image.

Use the following procedure to create an event handler.

1. Right click on a control and select ClassWizard.

2. Select the Message Maps tab and the desired control in the Object IDs
field. The Messages field displays the available events for the selected
control. (See Figure 4-6).

3. Select the event and press the Add Function button to add the event
handler to your code.

4. To switch directly to the source code for the event handler, click on the
Edit Code button. The cursor appears in the event handler, and you can
add the functions to call when the event occurs. You can use the Edit
Code button at any time by opening the class wizard and selecting the
event for the specific control.

The following figure is an example of an event handler generated for the
AcquiredImage event of a knob.

#include "_cwimaqimage.h"

void CTestDlg::OnAcquiredImageCwimaq1(VARIANT FAR*

ImageIndex)

{

// Create a new image object.

C_CWIMAQImage Image1 =

m_CWIMAQVision1.CreateCWIMAQImage();

//Copy the image from the IMAQ control to a

// separate image object.

m_CWIMAQVision1.Copy

(m_CWIMAQ1.GetImages().Item(*ImageIndex),

Image1);

}

Chapter 4 Building ComponentWorks IMAQ Vision Applications with Visual C++

ComponentWorks IMAQ Vision 4-10 © National Instruments Corporation

Figure 4-6. Event Handler

Creating Standalone Objects
Standalone objects are ActiveX objects created at run time, so you do not
place them on a form. They are used as parameters to many IMAQ Vision
functions. ComponentWorks uses two kinds of standalone objects: Images
and Reports. Standalone Image objects are identical to the Image objects
found on the CWIMAQ and CWIMAQViewer controls.

Standalone Image objects can store temporary results of image processing
functions that you do not want to display. Standalone Report objects are
arrays of data used as inputs and outputs to IMAQ Vision functions.

You can create standalone objects in Visual C++ using Create methods on
the CWIMAQVision control, such as CreateCWIMAQImage ,
CreateCWIMAQCaliperReport , and CreateCWIMAQShapeReport .

// Create a standalone image

C_CWIMAQImage Image =

m_CWIMAQVision1.CreateCWIMAQImage();

Standalone objects are automatically deallocated when the variable goes
out of scope.

© National Instruments Corporation 5-1 ComponentWorks IMAQ Vision

5
Building ComponentWorks
IMAQ Vision Applications
with Delphi

This chapter describes how you can use ComponentWorks controls with
Delphi; insert the controls into the Delphi environment, set their properties,
and use their methods and events; and perform these operations using
ActiveX controls. This chapter also outlines Delphi features that simplify
working with ActiveX controls.

Note The descriptions and figures in this chapter apply specifically to the Delphi 3
environment. If you have the original release of Delphi 3, you might experience
significant problems with ActiveX controls, but Borland offers a newer version of
Delphi that corrects most of these problems. Before using ComponentWorks with
Delphi 3, contact Borland to receive the Delphi 3 patch or a newer version.

Running Delphi Examples
To run the Delphi examples installed with ComponentWorks, you need to
import the controls into the Delphi environment. See the section on
Loading ComponentWorks Controls into the Component Palette for more
information about loading the controls.

Developing Delphi Applications
You start developing applications in Delphi using a form. A form is a
window or area on the screen on which you can place controls and
indicators to create the user interface for your programs. The Component
palette in Delphi contains all of the controls available for building
applications. After placing each control on the form, configure the
properties of the control with the default and custom property pages.
Each control you place on a form has associated code (event handler
routines) in the Delphi program that automatically executes when the user
operates the control or the control generates an event.

Chapter 5 Building ComponentWorks IMAQ Vision Applications with Delphi

ComponentWorks IMAQ Vision 5-2 © National Instruments Corporation

Loading ComponentWorks Controls into the Component Palette
Before you can use the ComponentWorks controls in your Delphi
applications, you must add them to the Component palette in the Delphi
environment. You need to add the controls to the palette only once because
the controls remain in the Component palette until you explicitly remove
them. When you add controls to the palette, you create Pascal import units
(header files) that declare the properties, methods, and events of a control.
When you use a control on a form, a reference to the corresponding import
unit is automatically added to the program.

Note Before adding a new control to the Component palette, make sure to save all your
work in Delphi, including files and projects. After loading the controls, Delphi
closes any open projects and files to complete the loading process.

Use the following procedure to add ActiveX controls to the Component
palette.

1. Select Import ActiveX Control from the Component menu in the
Delphi environment. The Import ActiveX Control window displays a
list of currently registered controls.

Figure 5-1. Delphi Import ActiveX Control Dialog Box

Chapter 5 Building ComponentWorks IMAQ Vision Applications with Delphi

© National Instruments Corporation 5-3 ComponentWorks IMAQ Vision

2. Select National Instruments CW IMAQ to add the IMAQ controls
to the Component palette.

3. After selecting the control group, click Install .

Delphi generates a Pascal import unit file for the selected .OCX file,
which is stored in the Delphi \Imports directory. If you have installed
the same .OCX file previously, Delphi prompts you to overwrite the
existing import unit file.

4. In the Install dialog box, click on OK to add the controls to the Delphi
user’s components package.

5. In the following dialog, click on Yes to rebuild the user’s components
package with the added controls. Another dialog box acknowledges
the changes you have made to the user’s components package, and the
package editor displays the components currently installed.

At this point, you can add additional ActiveX controls with the
following procedure.

a. Click on the Add button.

b. Select the Import ActiveX tab.

c. Select the ActiveX control you want to add.

d. Click on OK .

e. After adding the ActiveX controls, compile the user’s components
package.

If your control does not appear in the list of registered controls, click the
Add button. To register a control with the operating system and add it to the
list of registered controls, browse to and select the OCX file that contains
the control. Most OCX files reside in the \Windows\System(32)
directory.

New controls are added to the ActiveX tab in the Components palette. You
can rearrange the controls or add a new tab to the Components palette by
right clicking on the palette and selecting Properties.

Chapter 5 Building ComponentWorks IMAQ Vision Applications with Delphi

ComponentWorks IMAQ Vision 5-4 © National Instruments Corporation

Building the User Interface
After you add the ComponentWorks controls to the Component palette, use
them to create the user interface. Open a new project, and place different
controls on the form. After placing the controls on the form, configure their
default property values through the stock and custom property sheets.

Placing Controls
To place a control on the form, select the control from the Component
palette and click and drag the mouse on the form. Use the mouse to move
and resize controls to customize the interface, as in Figure 5-2. After you
place the controls, you can change their default property values by using the
default property sheet (Object Inspector) and custom property sheets.

Figure 5-2. ComponentWorks Controls on a Delphi Form

Using Property Pages
Set property values such as Name in the Object Inspector of Delphi. To
open the Object Inspector, select Object Inspector from the View menu or
press <F11>. Under the Properties tab of the Object Inspector, you can set
different properties of the selected control.

Chapter 5 Building ComponentWorks IMAQ Vision Applications with Delphi

© National Instruments Corporation 5-5 ComponentWorks IMAQ Vision

Figure 5-3. Delphi Object Inspector

To open the custom property pages of a control, double click on the control
or right click on the control and select Properties. You can edit most
control properties from the custom property pages. The following figure
shows the ComponentWorks IMAQ Hardware control property page.

Figure 5-4. ComponentWorks IMAQ Control Property Pages

Programming with ComponentWorks
The code for each form in Delphi is listed in the Associated Unit (code)
window. You can toggle between the form and Associated Unit window by
pressing <F12>. After placing controls on the form, use their methods in
your code and create event handler routines to process events generated by
the controls at run time.

Chapter 5 Building ComponentWorks IMAQ Vision Applications with Delphi

ComponentWorks IMAQ Vision 5-6 © National Instruments Corporation

Using Your Program to Edit Properties
You can set or read control properties programmatically by referencing the
name of the control with the name of the property, as you would any
variable name in Delphi. The name of the control is set in the Object
Inspector.

The syntax for setting the Value property in Delphi is

name.property := new_value;

For example, you can change the ColorMode property of an IMAQ control
acquiring RGB images using the following line of code, where CWIMAQ1 is
the default name of the IMAQ control and cwimaqColorModeRGB is a
constant defined by the IMAQ control.

CWIMAQ1.ColorMode := cwimaqColorModeRGB;

A property can be an object itself that has its own properties. To set
properties in this case, combine the name of the control, sub-object, and
property. For example, consider the following code for the IMAQ Viewer
control. Palette is both a property of the Viewer control and an object
itself. Type is a property of the Palette object. As an object of the Viewer
control, Palette itself has several additional properties.

CWIMAQViewer1.Palette.Type := cwimaqPaletteGrayScale;

You can retrieve the value of a control property from your program in the
same way. For example, you can assign the width of an image to a text box
on the user interface.

Edit1.Text := CWIMAQViewer1.Image.Width;

To use the properties or methods of an object in a collection, use the Item
method to extract the object from the collection. Once you extract the
object, use its properties and methods as you usually would.

CWIMAQ1.Images.Item(1).Type := cwimaqImageTypeRGB32;

Using Methods
Each control has defined methods that you can use in your program. To call
a method in your program, use the control name followed by the method
name.

CWIMAQ1.Start;

Some methods require parameters, as does the following method.

CWIMAQVision1.Copy (SourceImage, DestImage);

Chapter 5 Building ComponentWorks IMAQ Vision Applications with Delphi

© National Instruments Corporation 5-7 ComponentWorks IMAQ Vision

In most cases, parameters passed to a method are of type variant. Simple
scalar values can be automatically converted to variants and, therefore,
might be passed to methods. Arrays, however, must be explicitly declared
as variant arrays.

procedure TForm1.Button1Click(Sender: TObject);

var

image1: CWIMAQImage;

dataIn, dataOut: OleVariant;

i,j : integer;

begin

image1 := CWIMAQVision1.CreateCWIMAQImage();

dataIn := VarArrayCreate([0, 100, 0, 100],

varDouble);

for i := 0 to 99 do

for j := 0 to 99 do

dataIn[i,j] := i+j;

image1.ArrayToImage(dataIn);

CWIMAQViewer1.Attach (image1);

dataOut := image1.ImageToArray(0,0,100,100);

end;

Using Events
Use event handler routines in your source code to respond to and process
events generated by the different ComponentWorks IMAQ controls.
Events are generated by user interaction with an object in response to
internal conditions (for example, completed acquisition or an error). You
can create a skeleton for an event handler routine using the Object Inspector
in the Delphi environment.

To open the Object Inspector, press <F11> or select Object Inspector from
the View menu. In the Object Inspector, select the Events tab. This tab, as
shown in the following figure, lists all the events for the selected control.
To create a skeleton function in your code window, double click on the
empty field next to the event name. Delphi generates the event handler
routine in the code window using the default name for the event handler.

Chapter 5 Building ComponentWorks IMAQ Vision Applications with Delphi

ComponentWorks IMAQ Vision 5-8 © National Instruments Corporation

Figure 5-5. Delphi Object Inspector Events Tab

To specify your own event handler name, click in the empty field in the
Object Inspector next to the event, and enter the function name. After the
event handler function is created, insert the code in the event handler. The
following is an example of the event handler function for the
AcquiredImage event of the IMAQ control.

procedure TForm1.CWIMAQ1AcquiredImage(Sender: TObject;

var ImageIndex: OleVariant);

begin

end;

Creating Standalone Objects
Standalone objects are ActiveX objects created at run time, so you do not
place them on a form. They are used as parameters to many IMAQ Vision
functions. ComponentWorks uses two kinds of standalone objects: Images
and Reports. Standalone Image objects are identical to the Image objects
found on the CWIMAQ and CWIMAQViewer controls.

Standalone Image objects can store temporary results of image processing
functions that you do not want to display. Standalone Report objects are
arrays of data used as inputs and outputs to IMAQ Vision functions.

You can create standalone objects in Delphi using Create methods on the
CWIMAQVision control, such as CreateCWIMAQImage ,
CreateCWIMAQCaliperReport , and CreateCWIMAQShapeReport .

// Create a standalone image.

procedure TForm1.Button1Click(Sender:TObject);

var

Image:CWIMAQImage;

begin

Image := CWIMAQVision1.CreateCWIMAQImage;

end;

© National Instruments Corporation II-1 ComponentWorks IMAQ Vision

Part II

Using the ComponentWorks IMAQ Vision
Controls

This section describes the basic operation of the ComponentWorks IMAQ
Vision controls. These chapters contain overviews of the controls,
describing their most commonly used properties, methods, and events. The
descriptions also include short code segments to illustrate programmatic
control and tutorials that lead you through building an application with the
controls.

Part II, Using the ComponentWorks IMAQ Vision Controls, contains the
following chapters.

• Chapter 6, Using the Viewer and Hardware Controls, describes how
you can use the IMAQ Viewer and Hardware controls to acquire and
display images; explains individual controls and their most commonly
used properties, methods, and events; and includes a tutorial with
step-by-step instructions for using the controls.

• Chapter 7, Using the Vision Control, describes how you can use the
ComponentWorks IMAQ Vision control and its functions. You can
use the Vision control alone or with other controls to perform image
analysis, manipulation, and processing. Vision functions include
operations such as filtering, morphology, arithmetic, and
measurement.

• Chapter 8, Building Advanced IMAQ Vision Applications, discusses
how you can build applications using more advanced features of
ComponentWorks IMAQ Vision, including advanced image
acquisition techniques, image processing, and advanced user interface
options. It also explains error tracking, error checking, and debugging
techniques.

© National Instruments Corporation 6-1 ComponentWorks IMAQ Vision

6
Using the Viewer and Hardware
Controls

This chapter describes how you can use the IMAQ Viewer and Hardware
controls to acquire and display images; explains the individual controls and
their most commonly used properties, methods, and events; and includes a
tutorial with step-by-step instructions for using the controls.

You can find additional information about the Viewer and Hardware
controls and their properties, methods, and events in the ComponentWorks
IMAQ online reference, available by selecting Programs»National
Instruments ComponentWorks»IMAQ Vision»ComponentWorks
IMAQ Reference from the Windows Start menu.

Image Acquisition Configuration
Before using your National Instruments image acquisition (IMAQ)
hardware with the ComponentWorks IMAQ controls, configure your
IMAQ device using the IMAQ Configuration Utility. Make sure you
follow the directions in the IMAQ Configuration Utility online
documentation to properly configure the hardware. Use the configuration
utility to test the hardware and perform simple image acquisition
operations. Once configured, the image acquisition device is assigned an
interface name that you can use to reference it in applications. This is the
name you select in the IMAQ property pages.

What Are the Viewer and Hardware Controls?
Use the Viewer and Hardware controls to display and acquire images.
The Viewer and Hardware controls are named CWIMAQViewer and
CWIMAQ, respectively.

You can set most properties for these controls through property pages as
you design your program. To better understand the potential and versatility
of these controls, try experimenting with the control properties on the
property pages.

Chapter 6 Using the Viewer and Hardware Controls

ComponentWorks IMAQ Vision 6-2 © National Instruments Corporation

In certain cases, you might need to change the value of one or more
properties in your program code. Throughout this chapter, examples
demonstrate how to change values programmatically.

Note Although the code and examples in the tutorials use Visual Basic syntax, you can
apply the concepts and implement the steps in any programming environment.
Remember to adjust all code to your specific programming language.

Object Hierarchy
The ComponentWorks Viewer and Hardware controls are made up of a
hierarchy of simple objects. Understanding the relationship among the
objects in a control is the key to properly programming with the control.
Dividing a control into individual objects makes it easier to work with
because each individual component has fewer parts. Furthermore, several
objects in the object hierarchy are reused throughout different controls.

Viewer Control—IMAQ User Interface Control
Use the Viewer control to display and manipulate images. This control
displays static or dynamic (live) images and supports graphical region of
interest tools.

Note If you received the IMAQ Hardware control as part of NI-IMAQ and have not
purchased ComponentWorks IMAQ Vision, the Viewer control is in evaluation
mode.

Like other objects, the Viewer control is built from a hierarchy of objects,
as illustrated in Figure 6-1. The objects in the Viewer control represent the
different parts displayed on the physical representation of the viewer,
including the Viewer object, Regions collection and Region object, Palette
object, and Image object.

• Viewer object—An object that contains the basic properties of the
control, such as BorderWidth and ZoomScale .

• Regions collection and Region object—Objects used to control the
selection of regions of interest on the image. Regions are used to
construct a mask image that various image processing functions can
use.

• Palette object—An object that controls the mapping of bitmap pixel
values to colors viewed on screen. Use palettes to view image data in
different ways. You can use any of the predefined palettes or define
your own.

Chapter 6 Using the Viewer and Hardware Controls

© National Instruments Corporation 6-3 ComponentWorks IMAQ Vision

• Image object—The object that holds the image data the viewer is
displaying.

Figure 6-1. Viewer Control Object Hierarchy

Viewer Object
The Viewer object has several simple properties, such as Name and
BorderWidth , that you can set in the property pages during design. The
properties OriginX , OriginY , and ZoomScale are other important
properties that affect how the Viewer object displays an image.

Several methods in the Viewer object are called directly on the Viewer
control: Attach , Detach , and Center .

• Attach method—Replaces the Image object with an image that you
pass as a parameter to the Attach method, causing the Viewer to
display the new image and automatically update it as the image
changes.

• Detach method—Breaks the connection between a Viewer object and
an Image object. The image is no longer displayed.

• Center method—Centers the Viewer object around a point specified
by a parameter to the Center method.

Regions Collection
Property: Count

Palette Object
Methods such as

SetPalette, GetPalette

Region Object
Properties such as
PenColor, Visible

Image Object
Properties such as

Height, Width

Viewer Control
Properties such as

ZoomScale,
OriginX

Chapter 6 Using the Viewer and Hardware Controls

ComponentWorks IMAQ Vision 6-4 © National Instruments Corporation

Regions Collection
The Regions collection is a standard collection containing Region objects.
The collection contains one property, Count , which returns the number of
Region objects in the collection.

NumRegions = CWIMAQViewer1.Regions.Count

Use the Add, Remove, and RemoveAll methods to programmatically
change the number of regions on the Viewer object. The Remove method
requires the index of the plot to be removed.

CWIMAQViewer1.Regions.Add

CWIMAQViewer1.Regions.Remove 3

Use the Item method of the Regions collection to access any particular
Region object in the collection.

Dim Region1 as CWIMAQRegion

Set Region1 = CWIMAQViewer1.Regions.Item(1)

Region Object
The Region object represents an individual region on the Viewer object.
The Region object contains a number of different properties that determine
the display of the region, including PenColor , Shape , XData , and YData .
You can set these properties programmatically and modify them with the
SetRegion method.

CWIMAQViewer1.Regions.Item(1).PenColor = vbBlue

CWIMAQViewer1.Regions.Item(1).Shape = cwimaqRegionRect

Palette Object
Use the Palette object methods and property to specify user-defined or
predefined palettes. The GetPalette and SetPalette methods each
take three arrays as arguments to represent the red, green, and blue color
plane values either being read or set. The Type property sets the Palette
object to contain one of the predefined palettes. To set a predefined palette
at run time, right click on the Viewer object and select a palette on the
Palettes submenu.

Viewer Events
To enable applications to react to user interactions with a Viewer object, the
Viewer control generates a number of different events. There are eight key
events: PaletteChanged , ToolChanged , RegionsChanged ,

Chapter 6 Using the Viewer and Hardware Controls

© National Instruments Corporation 6-5 ComponentWorks IMAQ Vision

ViewerZoomed , ViewerPanned , ImageMouseMove , ImageMouseDown,
and ImageMouseUp .

• PaletteChanged , ToolChanged , ViewerZoomed , and
ViewerPanned —These events are generated every time the palette,
region tool, zoom scale, or origin is changed from the program or
through the pop-up menu.

• RegionsChanged —This event is generated every time a region is
added or removed through the user interface. It returns the new count
of the number of Region objects in the Regions collection.

• ImageMouseMove , ImageMouseDown, and ImageMouseUp—These
events are similar to the standard mouse events. Rather than returning
a point in terms of screen coordinates, these events return a point in
terms of the coordinates of the currently displayed image.

IMAQ Control—IMAQ Hardware Interface
Use the IMAQ Hardware control to acquire images from your IMAQ
hardware, including the capture of single or multiple images in continuous
or single-shot mode. You can configure the IMAQ control for many
different modes, including start triggers, skip counts, and frame or field
mode. After the properties are set, the application can perform acquisitions
using method calls.

The object hierarchy of the IMAQ control separates the functionality of the
control into individual objects, as shown in Figure 6-2.

Chapter 6 Using the Viewer and Hardware Controls

ComponentWorks IMAQ Vision 6-6 © National Instruments Corporation

Figure 6-2. IMAQ Control Object Hierarchy

The Images collection and Image objects represent the acquired images.
When you acquire multiple images, additional Image objects are added to
the Images collection.

IMAQ Object
The IMAQ object has an Interface property that selects the hardware
device used by the control. You can set this property on the General
property page for each control, or you can set it programmatically.

CWIMAQ1.Interface = "img0"

Additional properties include StopCondition and StartCondition ,
which allow you to configure how the acquisition will operate. For
example, the acquisition might run continuously or start on a trigger.

CWIMAQ1.StartCondition = cwimaqHardwareTrigger

Image Object
The Image object is the object that encapsulates image data. The Image
object contains properties for manipulating image attributes and provides a
mechanism for transferring images between the Hardware object and the
Viewer object.

IMAQ Control
Properties such as

Interface, ErrorEventMask

Images Collection
Property:

Count

Image Object
Properties such as

Height, Width

Chapter 6 Using the Viewer and Hardware Controls

© National Instruments Corporation 6-7 ComponentWorks IMAQ Vision

The Hardware control contains an Images collection, which can store
multiple Image objects. An Image object contains an image that the
Hardware control has acquired. The Image object in the Viewer control
contains the data the Viewer object displays.

Notice that an Image object can be shared between an IMAQ Hardware
control and a Viewer control, as depicted in Figure 6-3. When a new image
is acquired by the IMAQ Hardware object, the Viewer object automatically
displays that image.

Figure 6-3. Viewer Control and IMAQ Control Can Share an Image Object

To share and display an Image object, use the Attach method on the
Viewer object, as in the following code.

CWIMAQViewer1.Attach CWIMAQ1.Images.Item(1)

You can create other Image objects independently for image processing
functions.

Dim DestImage As CWIMAQImage

Set DestImage = CWIMAQVision1.CreateCWIMAQImage

CWIMAQViewer1.Attach CWIMAQ1.Images.Item(1)

CWIMAQVision1.Threshold CWIMAQ1.Images.Item(1),

DestImage, 50, 100, True, 255

CWIMAQViewer2.Attach DestImage

Regions Collection
Property: Count

Palette Object
Methods such as

SetPalette, GetPalette

Region Object
Properties such as
PenColor, Visible

Viewer Control
Properties such as

ZoomFactor,
OriginX

Images Collection
Property:

Count

Image Object
Properties such as

Height, Width

IMAQ Control
Properties such as

Interface, ErrorEventMask

Chapter 6 Using the Viewer and Hardware Controls

ComponentWorks IMAQ Vision 6-8 © National Instruments Corporation

IMAQ Methods and Events
The IMAQ object has a number of methods for running asynchronous and
synchronous image acquisition processes.

Asynchronous Acquisition
The methods to perform an asynchronous acquisition include Start ,
Stop , and Reset . These methods do not require any parameters. Use the
Start method to begin the acquisition. Use the Stop method only during
a continuous acquisition to stop such an operation. Use the Reset method
to unconfigure the IMAQ control and free resources reserved during
configuration.

Private Sub StartAcquisition_Click()

CWIMAQ1.Start

End Sub

Private Sub StopAcquisition_Click()

CWIMAQ1.Stop

End Sub

Private Sub ResetAcquisition_Click()

CWIMAQ1.Reset

End Sub

When a new image is acquired, the IMAQ control generates an
AcquiredImage event. The image index is returned to the event handler.
In the event handler, use the image index to access the most recent image
in multiple image acquisitions.

Private Sub CWIMAQ1_AcquiredImage(ImageIndex as Variant)

Dim h as Variant

CWIMAQVision1.Histogram CWIMAQ1.Images.

Item(ImageIndex), h

End Sub

Synchronous Acquisition
Use the IMAQ control to perform synchronous acquisition with the
AcquireImage method.

Private Sub RunAcquisition_Click()

Dim h as Variant

CWIMAQ1.AcquireImage

CWIMAQVision1.Histogram CWIMAQ1.Images.Item(1), h

End Sub

Chapter 6 Using the Viewer and Hardware Controls

© National Instruments Corporation 6-9 ComponentWorks IMAQ Vision

Error Handling
Use the IMAQError and IMAQWarning events for error handling.

Private Sub CWIMAQ1_IMAQError(ByVal StatusCode as Long,

ByVal ContextID As Long, ByVal ContextDescription

As String)

MsgBox "IMAQ Error: " + CStr(StatusCode)

End Sub

ExceptionOnError and ErrorEventMask
The CWIMAQ control handles error checking in a number of different
ways. By default, an exception is generated when an error occurs and is
handled by the programming environment. You can disable exception
generation using the ExceptionOnError property of the IMAQ control.
If exceptions are disabled, each call to a control method returns an error
code. If the code is equal to zero, the method completed normally. If the
value is non-zero, either a warning or error occurred and the application
should handle the condition.

The IMAQ controls can generate error and warning events in response to
error conditions. Each event calls a corresponding event handler to process
the error information. Use the ErrorEventMask property on the IMAQ
control to limit the error and warning event generation to specific
operations (contexts) of the IMAQ control. By default, the IMAQ control
generates an error event only during cwimaqAcquiring contexts,
indicating that the IMAQ control is asynchronously acquiring images and
returning them to the application. Contexts such as cwimaqStarting or
cwimaqConfiguring do not generate error events by default. You can
select which contexts generate error events by adding the values of the
CWIMAQErrorContexts constants and assigning the sum to the
ErrorEventMask property.

CWIMAQ1.ErrorEventMask =

cwimaqAcquiring + cwimaqStopping + cwimaqConfiguring

For more information about error handling, refer to Error Handling in
Chapter 8, Building Advanced IMAQ Vision Applications.

Chapter 6 Using the Viewer and Hardware Controls

ComponentWorks IMAQ Vision 6-10 © National Instruments Corporation

Tutorial: Using the Viewer and IMAQ Controls
This tutorial shows you how to integrate the Viewer and IMAQ controls to
complete a simple acquisition. This tutorial is divided into two parts:

• Synchronous, single-image acquisition and display

• Asynchronous, continuous single-image acquisition and display

Although the code and examples in the tutorial use Visual Basic syntax, you
can apply the concepts and implement the steps in any programming
environment. Remember to adjust all code to your specific programming
language.

Part 1: Synchronous, Single-Image Acquisition and Display
In the first part of this tutorial, you use an IMAQ object to acquire an image
and then you display that image in a Viewer object.

Designing the Form
1. Open a new project and form. If you are working in Visual C++,

select a dialog-based application and name your project
SimpleIMAQExample .

2. Load the ComponentWorks IMAQ controls into your programming
environment.

3. Place a CWIMAQViewer control on the form. Keep its default name,
CWIMAQViewer1.

4. Place a CWIMAQ control on the form. You configure its properties in
the next section, Setting the IMAQ Properties.

5. Place a CommandButton control on the form. Change its Caption
property to Acquire .

Your form should look similar to Figure 6-4.

Chapter 6 Using the Viewer and Hardware Controls

© National Instruments Corporation 6-11 ComponentWorks IMAQ Vision

Figure 6-4. Simple IMAQ Example Form

Setting the IMAQ Properties
You normally configure the default property values of the different controls
before you develop your program code. When using the IMAQ control, you
will set most properties, if not all, during design and will not change them
during program execution. Use this program to start and stop the
acquisition process only. If necessary, you can edit the properties of the
IMAQ control at run time.

1. To open the custom property pages for the IMAQ control placed on the
form, right click on the control and select Properties.

2. On the General page, select your image acquisition device from the
Interface combobox.

3. Close the IMAQ property pages.

Developing the Code
Develop the code so that data is acquired and displayed when you press the
Acquire button.

1. Generate the event handler routine for the Click event of the Acquire
button.

2. In the event handler, attach CWIMAQViewer1 to the first image object
of the CWIMAQ control and acquire the image using the CWIMAQ
control. The viewer automatically updates and displays the changed
image.

Chapter 6 Using the Viewer and Hardware Controls

ComponentWorks IMAQ Vision 6-12 © National Instruments Corporation

Private Sub Acquire_Click()

' Attach the image to the viewer.

CWIMAQViewer1.Attach CWIMAQ1.Images.Item(1)

' Acquire the image.

CWIMAQ1.AcquireImage

End Sub

Testing Your Program
Run and test your program. Click on the Acquire button to perform the
acquisition. Although the image displayed in your viewer depends on the
object your camera is viewing, your application should look similar to the
following figure.

Figure 6-5. Testing the Simple IMAQ Example

Part 2: Asynchronous, Continuous Single-Image Acquisition and Display
In the second part of this tutorial, you use an IMAQ object to
asynchronously and continuously acquire an image and then display the
continuous acquisition with a Viewer object.

Chapter 6 Using the Viewer and Hardware Controls

© National Instruments Corporation 6-13 ComponentWorks IMAQ Vision

Designing the Form
Continue using the form you designed in the first part of this tutorial,
SimpleIMAQExample .

Setting the IMAQ Properties
1. To open the custom property pages for the IMAQ control placed on the

form, right click on the control and select Properties.

2. On the Acquisition page, select Continuous for the Stop Condition so
the acquisition runs continuously.

3. Close the IMAQ property pages.

Developing the Code
Develop the code so that data is acquired and displayed when you press the
Acquire button.

1. Open the event handler from the first part of this example to edit the
code.

2. Change CWIMAQ1.AcquireImage to CWIMAQ1.Start to run the
acquisition asynchronously.

Private Sub Acquire_Click()

' Attach the image to the viewer.

CWIMAQViewer1.Attach CWIMAQ1.Images.Item(1)

' Start the acquisition.

CWIMAQ1.Start

End Sub

Testing Your Program
Run and test your program. Click on the Acquire button to perform the
acquisition and continuously capture images from the hardware.

© National Instruments Corporation 7-1 ComponentWorks IMAQ Vision

7
Using the Vision Control

This chapter describes how you can use the ComponentWorks IMAQ
Vision control and its functions. You can use the Vision control alone
or with other controls to perform image analysis, manipulation, and
processing. Vision functions include operations such as filtering,
morphology, arithmetic, and measurement.

Note If you received the IMAQ Hardware control as part of NI-IMAQ and have not
purchased ComponentWorks IMAQ Vision, the Vision control is in evaluation
mode.

What is the Vision Control?
The Vision control includes different image processing functions. Each
function is a method of the Vision control. You can pass parameters to a
function as you would with any other function. Most functions take Image
objects as inputs, outputs, or both.

Operations can be performed in-place when the same Image object is used
as both an input and an output. The following line of code adds image1 to
image2 and stores the result in image1 .

CWIMAQVision1.Add image1, image2, image1

The Vision control handles error checking in two different ways. By
default, an exception is generated when an error occurs in and is handled
by the programming environment. You can disable exception generation
using the ExceptionOnError property of the Vision control. If
exceptions are disabled, each call to a method returns an error code. If the
code is equal to zero, the method completed normally. If the value is
nonzero, an error occurred and the application should handle the condition.

Chapter 7 Using the Vision Control

ComponentWorks IMAQ Vision 7-2 © National Instruments Corporation

Vision Functions
Table 7-1 lists all the IMAQ Vision functions, grouped by category.

Table 7-1. IMAQ Vision Functions

Category Function

Files GetFileInfo

ReadFile

WriteFile

Tools BorderOperation

ClipboardToImage

ConvertByLookup

Copy

DrawLine

DrawOval

DrawRect

DrawText

Expand

Extract

GetCalibration

GetLine

GetPixelValue

GetRowColumn

ImageToClipboard

ImageToImage

MagicWand

Resample

SetCalibration

SetLine

Chapter 7 Using the Vision Control

© National Instruments Corporation 7-3 ComponentWorks IMAQ Vision

Tools
(continued)

SetPixelValue

SetRowColumn

Shift16To8

Arithmetic Operators Add

Divide

Modulo

MulDiv

Multiply

Subtract

Logic Operators And

Compare

LogDiff

Mask

Or

Xor

Processing AutoBThreshold

AutoMThreshold

Equalize

Label

MathLookup

MultiThreshold

Threshold

UserLookup

Filters Convolute

Correlate

GrayEdge

Table 7-1. IMAQ Vision Functions (Continued)

Category Function

Chapter 7 Using the Vision Control

ComponentWorks IMAQ Vision 7-4 © National Instruments Corporation

Filters
(continued)

LowPass

NthOrder

Morphology Circles

Convex

Danielsson

Distance

FillHole

GrayMorphology

Morphology

RejectBorder

RemoveParticle

Segmentation

Separation

Skeleton

Analysis BasicParticle

Centroid

Histogram

LineProfile

Particle

ParticleCoefficients

ParticleDiscrimination

Quantify

Geometry Rotate

Shift

Symmetry

View3D

Table 7-1. IMAQ Vision Functions (Continued)

Category Function

Chapter 7 Using the Vision Control

© National Instruments Corporation 7-5 ComponentWorks IMAQ Vision

Complex CxAdd

CxAttenuate

CxConjugate

CxDivide

CxFlipFrequency

CxMultiply

CxSubtract

CxTruncate

ExtractComplexPlane

FFT

InverseFFT

ReplaceComplexPlane

Color ColorEqualize

ColorHistogram

ColorThreshold

ColorUserLookup

ColorValueConversion

ColorValueToInteger

ExtractColorPlanes

GetColorLine

GetColorPixelValue

IntegerToColorValue

ReplaceColorPlane

SetColorLine

SetColorPixelValue

Table 7-1. IMAQ Vision Functions (Continued)

Category Function

Chapter 7 Using the Vision Control

ComponentWorks IMAQ Vision 7-6 © National Instruments Corporation

Object Creation CreateCWIMAQBasicParticleReport

CreateCWIMAQCaliperReport

CreateCWIMAQCirclesReport

CreateCWIMAQDiscriminationData

CreateCWIMAQEdgeReport

CreateCWIMAQFullParticleReport

CreateCWIMAQHistogramReport

CreateCWIMAQImage

CreateCWIMAQKernal

CreateCWIMAQProfileReport

CreateCWIMAQQuantifyReport

CreateCWIMAQShapeReport

CreateCWIMAQStructuringElement

CreateCWIMAQThresholdData

Caliper Caliper

FindEdges

GetAngles

Interpolate1D

LineGauge

PointDistances

Search ShapeMatch

Alignment CoordinateReference

Table 7-1. IMAQ Vision Functions (Continued)

Category Function

Chapter 7 Using the Vision Control

© National Instruments Corporation 7-7 ComponentWorks IMAQ Vision

Tutorial: Using Simple Image Processing Functions
This tutorial shows you how to use Vision functions and integrate the
Vision control with the IMAQ and Viewer controls. This tutorial is divided
into three parts:

• Reading an image from a file and thresholding

• Particle analysis

• Acquisition and image processing

Although the code and examples in the tutorial use Visual Basic syntax, you
can apply the concepts and implement the steps in any programming
environment. Remember to adjust all code to your specific programming
language.

Part 1: Reading an Image From a File and Thresholding
In the first part of this tutorial, you use a Vision object to read an image
from a file and then display the thresholded image in a Viewer object.

Designing the Form
1. Open a new project and form. If you are working in Visual C++, select

a dialog-based application and name your project IMAQFileExample .

2. Load the ComponentWorks IMAQ controls into your programming
environment.

3. Place a CWIMAQVision control on the form. Keep its default name,
CWIMAQVision1 .

4. Place a CWIMAQViewer control on the form. Keep its default name,
CWIMAQViewer1.

5. Place a CommandButton control on the form. Change its Caption
property to Read.

Chapter 7 Using the Vision Control

ComponentWorks IMAQ Vision 7-8 © National Instruments Corporation

Your form should look similar to Figure 7-1.

Figure 7-1. IMAQ File Example

Developing the Code
Develop the code so that an image is read, thresholded, and displayed when
you press the Read button.

1. Double click on the Read button to define an event handler routine to
be called when the Read button is pressed.

2. In the event handler, declare a CWIMAQImage object. This is the
image into which the file data will be loaded. Containers such as Visual
Basic and Borland Delphi automatically create and allocate objects.

Note Environments such as Visual C++ require you to use the CreateCWIMAQImage
method to create a new CWIMAQImage object.

3. Use the ReadFile method to read the contents of the iron.bmp file.
The image file is located in the ComponentWorks\Images directory.
You might need to modify the path to match the actual location of the
iron.bmp file on your hard drive.

4. Threshold the image into CWIMAQViewer1.Image . Notice how the
thresholded image is automatically displayed in the Viewer when the
image contents change.

Chapter 7 Using the Vision Control

© National Instruments Corporation 7-9 ComponentWorks IMAQ Vision

Your Read_Click() routine should be similar to the following code. You
can experiment with different threshold values and other files.

Private Sub Read_Click()

Dim Image1 as New CWIMAQImage

Dim ColorTable

' Read the file.

CWIMAQVison1.ReadFile Image1, "c:\iron.bmp",

ColorTable

' Threshold the image into CWIMAQViewer.

CWIMAQVision1.Threshold Image1, CWIMAQViewer1.Image,

128, 255, TRUE, 255

End Sub

Testing Your Program
Run and test your program. Click on the Read button to read and process
the file. Your application should look similar to Figure 7-2.

Figure 7-2. Testing the IMAQ File Example

Chapter 7 Using the Vision Control

ComponentWorks IMAQ Vision 7-10 © National Instruments Corporation

Part 2: Particle Analysis
In the second part of this tutorial, you modify the first procedure to perform
particle analysis. This part of the tutorial illustrates a more complex image
processing function and demonstrates the use of Report objects.

Designing the Form
1. Continue using the form you designed in Part 1, IMAQFileExample .

2. Place a TextBox control on the form. Name it TotalArea .

Developing the Code
Develop the code so that the thresholded image is processed and the total
area of the particles is displayed in the text box.

1. Double click on the Read button to define an event handler routine to
be called when the Read button is pressed.

2. In the event handler, declare a CWIMAQBasicParticleReport object.
This object will contain the result of the BasicParticle processing
function.

Containers such as Visual Basic and Borland Delphi automatically
create and allocate objects.

Note To create a new object in environments such as Visual C++, you must use the
CreateCWIMAQBasicParticleReport method.

3. Use the BasicParticle function to perform the particle analysis.
Notice how CWIMAQViewer1.Image is being used as a source image
for an image processing function.

4. Calculate the total area of all particles by looping through the
CWIMAQBasicParticleReport .

Your Read_Click() routine should be similar to the following code.

Private Sub Read_Click()

Dim Image1 as New CWIMAQImage

Dim Report1 as New CWIMAQBasicParticleReport

Dim ColorTable

Dim i, area as Integer

area = 0

' Read the file.

CWIMAQVison1.ReadFile Image1, "c:\iron.bmp",

ColorTable

' Threshold the image into CWIMAQViewer1.

Chapter 7 Using the Vision Control

© National Instruments Corporation 7-11 ComponentWorks IMAQ Vision

CWIMAQVision1.Threshold Image1, CWIMAQViewer1.Image,

128, 255, TRUE, 255

' Perform particle analysis.

CWIMAQVision1.BasicParticle CWIMAQViewer1.Image,

Report1

' Calculate the total area of all particles.

For i=1 to Report1.Count

area = area + Report1.Area(i)

Next i

TotalArea.Text = area

End Sub

Testing Your Program
Run and test your program. Click on the Read button to read and process
the file. Your application should look similar to Figure 7-3.

Figure 7-3. Testing the IMAQ File Example After Adding Particle Analysis

Part 3: Acquisition and Image Processing
In the third part of this tutorial, you acquire an image using the IMAQ
control and perform a threshold operation on it. This procedure is similar
to the first procedure, except it acquires an image from hardware rather than
reading an image from a file.

Chapter 7 Using the Vision Control

ComponentWorks IMAQ Vision 7-12 © National Instruments Corporation

Designing the Form
1. Open a new project and form. If you are working in Visual C++,

select a dialog-based application and name your project
IMAQAcqThreshExample .

2. Load the ComponentWorks IMAQ controls into your programming
environment.

3. Place a CWIMAQVision control on the form. Keep its default name,
CWIMAQVision1 .

4. Place two CWIMAQViewer controls on the form. Keep their default
names, CWIMAQViewer1 and CWIMAQViewer2.

5. Place a CWIMAQ control on the form. Keep its default name,
CWIMAQ1.

6. Place a CommandButton control on the form. Change its Caption
property to Read.

Your form should look similar to Figure 7-4.

Figure 7-4. Image Acquisition Threshold Example

Chapter 7 Using the Vision Control

© National Instruments Corporation 7-13 ComponentWorks IMAQ Vision

Setting the IMAQ Properties
1. To open the custom property pages for the IMAQ control placed on the

form, right click on the control and select Properties.

2. On the General page, select your image acquisition device from the
Interface combobox.

3. Close the IMAQ property pages.

Developing the Code
Develop the code so that the CWIMAQ control acquires an image and the
image is thresholded and displayed in a CWIMAQViewer object.

1. Double click on the Read button to define an event handler routine to
be called when the Read button is pressed.

2. Acquire an image using the AcquireImage method on the CWIMAQ
control.

3. Threshold the image using the CWIMAQVision control and place the
result in the image that belongs to the CWIMAQViewer control.

Your Read_Click() routine should be similar to the following code.

Private Sub Read_Click()

' Attach the image to the viewer.

CWIMAQViewer1.Attach CWIMAQ1.Images(1)

' Acquire the image.

CWIMAQ1.AcquireImage

' Threshold the image.

CWIMAQVision1.Threshold CWIMAQViewer1.Image,

CWIMAQViewer2.Image, 128, 255, TRUE, 255

End Sub

Chapter 7 Using the Vision Control

ComponentWorks IMAQ Vision 7-14 © National Instruments Corporation

Testing Your Program
Run and test your program. Click on the Read button to read and process
the file. Your application should look similar to Figure 7-5.

Figure 7-5. Testing the Image Acquisition Threshold Example

© National Instruments Corporation 8-1 ComponentWorks IMAQ Vision

8
Building Advanced IMAQ Vision
Applications

This chapter discusses how you can build applications using more
advanced features of ComponentWorks IMAQ Vision, including advanced
image acquisition techniques, image processing, and advanced user
interface options. It also explains error tracking, error checking, and
debugging techniques.

The applications presented in this chapter illustrate advanced IMAQ Vision
functions, such as shape matching and edge detection, and use advanced
user interface control features, such as viewer regions of interest.

You can customize these examples to implement the advanced features in
your own applications. They are located in the \ComponentWorks

\Tutorials-IMAQ directory.

Finding Features on a Printed Circuit Board
The Feature Find application uses the ComponentWorks IMAQ Vision
user interface and image processing controls to build an application that
finds arbitrary features on a printed circuit board. Load the sample program
from \ComponentWorks\Tutorials-IMAQ into your development
environment to follow the discussion. Figure 8-1 shows the application at
run time.

Depending on the state of the region selection radio buttons, the main
viewer operates in two different modes. The first mode, Template Image,
enables selection of a template image that contains the feature for which
to be searched. The second mode, Search Regions, selects one or more
rectangular regions where the application will search for the feature. The
Tolerance input controls the precision level of the search, from locating an
exact mach to finding all similar objects. Tolerance ranges in value from
0 to 1, where 1 specifies that only exact matches should be found. As
Tolerance decreases, the matching criteria is reduced and more similar
matches are found.

Chapter 8 Building Advanced IMAQ Vision Applications

ComponentWorks IMAQ Vision 8-2 © National Instruments Corporation

Figure 8-1. Feature Find Application

Manipulating Regions of Interest through the User Interface
Each of the radio button states allows the user to draw rectangular regions
of interest on the main viewer control. As regions are manipulated through
the user interface, the RegionsChanged event is generated. This event
returns the new number of regions in the collection.

Private Sub CWIMAQViewer1_RegionsChanged(Count As

Variant)

Dim top as Long, left as Long, width as Long,

height as Long

CWIMAQViewer1.Regions(Count).GetBoundingRect left,

top, width, height

If (Option1.Value = True) Then

'Selecting the template

Chapter 8 Building Advanced IMAQ Vision Applications

© National Instruments Corporation 8-3 ComponentWorks IMAQ Vision

CWIMAQVision1.Extract board,

CWIMAQViewer2.Image, left, top, width, height

CWIMAQViewer1.Regions.Remove Count

Else

'Selecting Search Regions

CWIMAQViewer1.Regions(Count).PenColor = vbGreen

CWIMAQViewer1.Regions(Count).Active = False

End If

In Template Image mode, you can select the template image by clicking and
dragging a rectangle. You can extract the template image with the Extract
method on the CWIMAQVision control. Finally, you can remove the region
that was just added with the Remove method on the Regions collection. To
ensure that only one template image is selected at a time, remove previous
template images.

With the Search Regions mode, you can select one or more regions in
which to look for the template image. To select multiple regions, press and
hold the <Shift> key as you draw a new rectangular selection. By default,
the viewer deletes all existing regions when a new region is specified
through the user interface.

AutoDelete, Active, and Visible Properties
The AutoDelete , Active , and Visible properties specify the behavior
of the regions of interest. AutoDelete is a property of the Viewer control,
while Active and Visible are properties of the Region object.

When a new region is specified through the user interface, the viewer
removes all existing regions. To override this default for a single instance,
press the <Shift> key as you begin a new region. To completely disable this
feature, set the AutoDelete property of the Viewer control to False .

Private Sub Option1_Click()

CWIMAQViewer1.AutoDelete = False

End Sub

Private Sub Option2_Click()

CWIMAQViewer1.AutoDelete = True

End Sub

In this application, AutoDelete is set to False when specifying the
template image so that any existing search regions are not deleted. When
selecting search regions, AutoDelete is enabled.

Chapter 8 Building Advanced IMAQ Vision Applications

ComponentWorks IMAQ Vision 8-4 © National Instruments Corporation

The Active property determines if the Region object will be used on
certain methods on the Regions Collection. It is True by default.

The RegionsToMask function produces a mask image that is composed of
those individual Region objects that have their Active properties set to
True . In this example, the Active properties of all search regions are set
to False as they are added. These regions are not part of the mask image
that is generated to highlight located features.

CWIMAQViewer1.Regions.RegionsToMask mask

The Visible property determines if an individual region is drawn on the
Viewer control, which is useful for defining temporary regions or
intermediate results. By default, the Visible property is True .

Finding Features and Displaying Results
When you press the Correlate button, code is executed. This code finds the
selected template image in the selected regions using the following steps.

First, the bounding rectangle for the region is computed and passed to the
Correlate function, along with the source image, template image, and
destination image. The Correlate function searches the source image for
features that match the template images and assigns increasing pixel values
to areas of greatest correlation in the destination image. Because only the
area specified by the bounding rectangle is considered, the Correlate
function is faster than searching the entire source image.

CWIMAQViewer1.Regions(i).GetBoundingRect left, top,

width, height

CWIMAQVision1.Correlate board, CWIMAQViewer2.Image,

dest, left, top, width, height

Next, the destination image is thresholded to extract the areas with the
closest matches. The level of thresholding is based on the Tolerance
parameter. The result of the threshold operation is a binary image with
particles at areas of high correlation.

CWIMAQVision1.Threshold dest, dest, Text1.Text * 255, 255

The Particle function generates a report of all the particles in the binary
image. Using this report, the ParticleCoefficents function calculates
the x and y coordinates of the center of mass for each particle.

CWIMAQVision1.Particle dest, rep

Chapter 8 Building Advanced IMAQ Vision Applications

© National Instruments Corporation 8-5 ComponentWorks IMAQ Vision

CWIMAQVision1.ParticleCoefficients dest,

Array(cwimaqParticleCenterMassX,

cwimaqParticleCenterMassY), rep, coeffs

Once the x and y coordinates of the center of mass for each particle are
known, a highlighted region is drawn around each area. The DrawRect
function draws the outline, and the UserLookup function highlights the
area. Because UserLookup requires a mask image, a temporary region is
programmatically created from which the mask image is generated.

CWIMAQVision1.DrawRect CWIMAQViewer1.Image,

CWIMAQViewer1.Image, x, y, CWIMAQViewer2.Image.width,

CWIMAQViewer2.Image.height, cwimaqDrawModeFrame, 255

Set r = CWIMAQViewer1.Regions.Add

r.Visible = False

r.SetRegion cwimaqRegionRect, Array(x, x +

CWIMAQViewer2.Image.width - 1), Array(y, y +

CWIMAQViewer2.Image.height - 1)

CWIMAQViewer1.Regions.RegionsToMask mask

CWIMAQVision1.UserLookup CWIMAQViewer1.Image,

CWIMAQViewer1.Image, table, mask

CWIMAQViewer1.Regions.Remove

CWIMAQViewer1.Regions.Count

Floppy Disk Inspection
The Floppy Disk Inspection application uses the ComponentWorks IMAQ
Vision user interface and image processing controls to build an application
that examines images of diskettes and determines if a feature has been
printed correctly. Load the sample program from \ComponentWorks

\Tutorials-IMAQ into your development environment to follow the
discussion. Figure 8-2 shows the application at run time.

Use the Test Configuration window to setup and configure the test. The
Unit Under Test window displays the ongoing testing and running statistics,
such as the number of units tested and the current test rate.

The test is configured by sequentially clicking the four buttons in the Test
Configuration window.

Chapter 8 Building Advanced IMAQ Vision Applications

ComponentWorks IMAQ Vision 8-6 © National Instruments Corporation

Figure 8-2. Floppy Disk Inspection

First, press Load Reference Image. An image of a diskette is loaded into
the viewer window. You can use this image to select a coordinate reference
system and a search region.

Next, press Select Coordinate Reference. Three line regions of interest
are programmatically added, and an edge detection is performed along each
region. These three points define a coordinate reference system that defines
the initial position of the search region.

Now, press Select Region To Monitor. A rectangular region is
programmatically added around the HD text, which is the printed feature in
which this test is interested.

Finally, press Start Inspection. You can control the rate of inspection with
the Delay slider control. As new disk images are loaded, edge detections
are performed along the same three line regions of interest. These three
points define a new coordinate reference system for the rotated and
translated disk image. Using the new and old reference systems, the search

Chapter 8 Building Advanced IMAQ Vision Applications

© National Instruments Corporation 8-7 ComponentWorks IMAQ Vision

region is rotated and translated to match the motion of the disk. The HD on
the new disk is inspected for defects.

Manipulating Regions of Interest Programmatically
The Disk Inspection application uses several regions of interest to perform
functions such as edge detection and search location specification. In this
application, regions are specified programmatically rather than through the
user interface as in the Feature Find application.

When the Select Coordinate Reference button is pressed, three line
regions of interest are defined.

Set Line = diskviewer.Regions.Add

Line.PenColor = vbYellow

Line.SetRegion cwimaqRegionLine, Array(40, 90),

Array(130, 130)

MakeCoordinateReference xdata(0), ydata(0), x0, y0

Line.Active = False

The SetRegion method programmatically defines regions of interest. This
method takes a shape parameter, an array of X coordinates, and an array of
Y coordinates as inputs. This line is defined as starting at point 40,130 and
ending at 90,130, defining a horizontal line 50 pixels long.

Edge Detection and Shape Matching
Edge detection is performed using the FindEdges function.

Dim EdgeReport As New CWIMAQEdgeReport

Dim i

CWIMAQVision1.FindEdges diskviewer.Image,

XProfilePoints, YProfilePoints, 40, 4, 2,

cwimaqInterpolateBiLinear, cwimaqSubPixelNone,

EdgeReport, x, y

x = x(0)

y = y(0)

CWIMAQVision1.DrawOval diskviewer.Image,

diskviewer.Image, x - 4, y - 4, 8, 8,

cwimaqDrawModePaint, 255

The FindEdges function produces an array of x and y coordinates. The
pairs of x and y values specify locations of edges that have been found.
Because the regions in this example were set up and tested to produce only

Chapter 8 Building Advanced IMAQ Vision Applications

ComponentWorks IMAQ Vision 8-8 © National Instruments Corporation

one edge, only the first element of each array is used. The DrawOval
method draws a circle with a diameter of 8 pixels centered over the edge
coordinate.

Shape matching is performed using the ShapeMatch function.

Set r = diskviewer.Regions(4)

r.Visible = False

diskviewer.Regions(5).Visible = False

diskviewer.Regions(5).SetRegion r.Shape, r.xdata,

r.ydata, r.External

diskviewer.Regions.TransformRegions originx, originy,

degrees, newx, newy, newdegrees

diskviewer.Regions(5).Visible = True

diskviewer.Regions(5).GetBoundingRect, left, top,

width, height

CWIMAQVision1.Extract diskviewer.Image, search, left,

top, width, height

CWIMAQVision1.Threshold search, search, 150, 255

CWIMAQVision1.ShapeMatch search, template, search, rep,

, 0.05

In the above code fragment, the original search region is copied into a new
Region object. This new region is translated and rotated to the new
coordinate system using the TransformRegions method. The bounding
rectangle for the new region is computed, and the image contained in the
rectangle is extracted to produce a small source image for shape match to
operate on, reducing processing time.

The source image is thresholded and passed into the ShapeMatch function,
along with the template image. ShapeMatch operates on binary images,
and it is insensitive to rotation.

Report Objects
Many IMAQ functions, such as FindEdges and ShapeMatch , require
Report objects. There are several different types of Report objects, and
their use depends on which IMAQ Vision function is invoked. You can
consider all reports as arrays of individual items. Each item contains data
that is read or written by IMAQ Vision functions. Reports are 1-based (the
first index is 1, not 0).

For example, the CWIMAQEdgeReport object has several properties:
Contrast , Count , Polarity , Position , and Score . The Count

Chapter 8 Building Advanced IMAQ Vision Applications

© National Instruments Corporation 8-9 ComponentWorks IMAQ Vision

property is common to all Report objects. Count is always readable and
can be writable if the user can resize the report. Because the other
properties are specific to edge detection functions, they are set by the
FindEdges function. You can read the values of individual properties as
shown in the following code.

Dim EdgeReport As New CWIMAQEdgeReport

CWIMAQVision1.FindEdges diskviewer.Image

XProfilePoints, YProfilePoints, 40, 4, 2,

cwimaqInterpolateBiLinear, cwimaqSubPixelNone,

EdgeReport, x, y

' Get the polarity of the first edge.

Text1.Text = EdgeReport.Polarity(1)

You can create reports in Visual Basic using the New operator. To create
reports in environments such as Visual C++ or Delphi, use the Create
functions on the CWIMAQVision object, as described in the Creating
Standalone Objects sections of Chapter 4, Building ComponentWorks
IMAQ Vision Applications with Visual C++, and Chapter 5, Building
ComponentWorks IMAQ Vision Applications with Delphi. You can find
additional information about each report type in the online reference.

Adding Testing and Debugging to your Application
Although they vary depending on the programming environment,
debugging tools normally include features such as breakpoints, step-run
modes, and watch windows.

Error Checking
ComponentWorks controls can report error information to you and to the
application in a number of different ways:

• Return an error code from a function or method call

• Generate an error or warning event

• Throw an exception handled by your programming environment

The type of error reporting depends on the type of application and the
preference of the programmer.

By default, all the ComponentWorks IMAQ Vision controls generate
exceptions when errors occur, rather than returning error codes from the
methods. However, the CWIMAQ and CWIMAQVision controls have a
property, ExceptionOnError , that you can set to False if you want

Chapter 8 Building Advanced IMAQ Vision Applications

ComponentWorks IMAQ Vision 8-10 © National Instruments Corporation

methods to return error codes instead of generating exceptions. Error events
are generated by the CWIMAQ control if an error occurs during specific
contexts of an acquisition process. The contexts for which error events are
generated are set in the ErrorEventMask property of the IMAQ control.

Exceptions
Exceptions are error messages returned directly to your programming
environment. Usually, exceptions are processed by displaying a default
error message. The error message allows you to end your application or to
enter debug mode and perform certain debugging functions. Part of the
exception returned is an error number and error description, displayed as
part of the error message. For example the CWIMAQ control may return
the following exception to Visual Basic:

Figure 8-3. Visual Basic Error Message

Depending on your programming environment, you might be able to insert
code that can catch exceptions being sent to your application and handle
them in another manner. In Visual Basic, you can do this by using the On

Error statement.

• On Error Resume Next disables automatically generated error
messages. The program continues running at the next line. To handle
an error in this mode, you should check and process the information in
the Err object in your code.

Private Sub Acquire_Click()

On Error Resume Next

CWIMAQ1.AcquireImage

If Err.Number <> 0 Then MsgBox "Acquire: " +

CStr(Err.Number)

End Sub

Chapter 8 Building Advanced IMAQ Vision Applications

© National Instruments Corporation 8-11 ComponentWorks IMAQ Vision

• On Error GoTo disables automatically generated error messages and
causes program execution to continue at a specified location in the
subroutine. You can define one error handler in your subroutine.

Private Sub Acquire_Click()

On Error GoTo ErrorHandler

CWAI1.AcquireImage

Exit Sub

ErrorHandler:

MsgBox "IMAQ Error: " + CStr(Err.Number)

Resume Next

End Sub

If you are not using Visual Basic, consult the documentation for your
programming environment for information about handling exceptions.

Return Codes
If the ExceptionOnError property is set to False , the CWIMAQ and
CWIMAQVision control methods return a status code to indicate whether
an operation completed successfully. If the return value is something other
than zero, it indicates a warning or error. A positive return value indicates
a warning, signifying that a problem occurred in the operation, but that you
should be able to continue with your application. A negative value indicates
an error—a critical problem that has occurred in the operation—and that all
other functions or methods dependent on the failed operation also will fail.

To retrieve the return code from a method call, assign the value of the
function or method to a long integer variable and check the value of the
variable after calling the function or method. For example, the following
code checks the return code of the CWIMAQ control Start method.

lerr = CWIMAQ1.Start

If lerr <> 0 Then MsgBox "Error at IMAQ Start: " +

CStr(lerr)

In Visual Basic, you can use the MsgBox popup window to display error
information. Normally, you can write one error handler for your application
instead of duplicating it for every call to a function or method. For example,
the following code creates a LogError subroutine to use with the Start
method and later functions or methods.

Private Sub LogError(code As Long)

If code <> 0 Then

MsgBox "IMAQ Error: " + CStr(code)

End If

End Sub

Chapter 8 Building Advanced IMAQ Vision Applications

ComponentWorks IMAQ Vision 8-12 © National Instruments Corporation

To use the LogError subroutine, call LogError before every function or
method call. The return code is passed to LogError and processed.

LogError CWIMAQ1.Start

Error and Warning Events
The IMAQ control also includes its own error and warning events –
IMAQError and IMAQWarning. Although you normally use return codes
for error checking of the methods used on the IMAQ control, you cannot
use return codes for error checking in asynchronous operations such as a
continuous acquisition because no methods are called after the first Start
method. In this case, the CWIMAQ control generates its own error event if
an error or warning occurs during an ongoing acquisition. You can develop
an event handler to process these error and warning events. The following
code shows the skeleton event functions for the CWIMAQ control.

CWIMAQ1_IMAQError (ByVal StatusCode As Long, ByVal

ContextID As Long, ByVal ContextDescription As String)

CWIMAQ1_IMAQWarning (ByVal StatusCode As Long, ByVal

ContextID As Long, ByVal ContextDescription As String)

The StatusCode variable that is passed to the event handler contains the
value of the error or warning condition. The ContextID contains a value
describing the operation where the error or warning occurred, and the
ContextDescription contains a string describing the operation where
the error or warning occurred.

The following code shows an example of how to use the
CWIMAQ_IMAQError event in a Visual Basic application.

Private Sub CWIMAQ1_IMAQError(ByVal StatusCode As Long,

ByVal ContextID As Long, ByVal ContextDescription As

String)

MsgBox ContextDescription + ": CStr(StatusCode)

End Sub

This code produces the following error message box.

Figure 8-4. Error Message Box

Chapter 8 Building Advanced IMAQ Vision Applications

© National Instruments Corporation 8-13 ComponentWorks IMAQ Vision

By default, only asynchronous operations call error and warning events.
You can set the ErrorEventMask property of the CWIMAQ control to
specify the operations for which the error and warning events are called.

Debugging
This section outlines a number of general debugging methods that you
might use in your application development. If you experience some
unexpected behavior in your program, use these methods to locate and
correct the problem in your application.

Debug Print
One of the most common debugging methods is to print out or display
important variables throughout the program execution. You can monitor
critical values and determine when your program varies from the expected
progress. Some programming environments have dedicated debugging
windows that are used to display such information without disturbing the
rest of the user interface. For example, you can use the Debug.Print
command in Visual Basic to print information directly to the debug
window.

Debug.Print CWIMAQ1.Interface

Breakpoint
Most development environments include breakpoint options so you can
suspend program execution at a specific point in your code. Breakpoints are
placed on a specific line of executable code in the program to pause
program execution.

Stopping at a breakpoint confirms that your application ran to the line of
code containing the breakpoint. If you unsure whether a specific section of
code is being called, place a breakpoint in the routine to find out. Once you
have stopped at a specific section of your code, you can use other tools,
such as a watch window or debug window, to analyze or even edit variables.

In some environments, breakpoints might include conditions so program
execution halts if certain other conditions are met. These conditions usually
check program variables for specific values. Once you have completed the
work at the breakpoint, you can continue running your program, either in
the normal run mode or in some type of single-step mode.

Chapter 8 Building Advanced IMAQ Vision Applications

ComponentWorks IMAQ Vision 8-14 © National Instruments Corporation

Watch Window
Use a watch window to display the value of a variable during program
execution. You can use it to edit the value of a variable while the program
is paused. In some cases, you can display expressions, which are values
calculated dynamically from one or more program variables.

Single Step, Step Into, and Step Over
Use single stepping to execute a program one line at a time. This way, you
can check variables and the output from your program during execution.
Single stepping is commonly used after a breakpoint to slowly step through
a questionable section of code.

If you use step into, the program executes any code available for
subroutines or function calls and steps through it one line at a time. Use this
mode if you want to check the code for each function called. The step over
mode assumes that you do not want to go into the code for functions being
called and runs them as one step.

In some cases, you might want to test a limited number of iterations of a
loop but then run the rest of the iterations without stopping again. For this
type of debugging, several environments include an option step to cursor or
run to cursor options. Under this option, you can place your cursor at a
specific point in the code, such as the first line after a loop, and run the
program to that point.

© National Instruments Corporation III-1 ComponentWorks IMAQ Vision

Part III

Introduction to Vision

This section presents the basics of computer-based vision applications.

Part III, Introduction to Vision, contains the following chapters.

• Chapter 9, Algorithms, Principles of Image Files, and Data Structures,
describes the algorithms and principles of image files and data
structures.

• Chapter 10, Tools and Utilities, describes the tools and utilities used in
IMAQ Vision.

• Chapter 11, Lookup Transformations, provides an overview of lookup
table transformations.

• Chapter 12, Operators, describes the arithmetic and logic operators
used in IMAQ Vision.

• Chapter 13, Spatial Filtering, provides an overview of the spatial
filters, including linear and nonlinear filters, used in IMAQ Vision.

• Chapter 14, Frequency Filtering, describes the frequency filters used
in IMAQ Vision.

• Chapter 15, Morphology Analysis, provides an overview of
morphology image analysis.

• Chapter 16, Quantitative Analysis, provides an overview of
quantitative image analysis. The quantitative analysis of an image
consists of obtaining densitometry and object measurements. Before
starting this analysis, it is necessary to calibrate the image spatial
dimensions and intensity scale to obtain measurements expressed in
real units.

© National Instruments Corporation 9-1 ComponentWorks IMAQ Vision

9
Algorithms, Principles of Image
Files, and Data Structures

This chapter describes the algorithms and principles of image files and data
structures.

Introduction to Digital Images
An image is a function of the light intensity

f(x, y)

where f is the brightness of the point (x, y), and x and y represent the spatial
coordinates of a picture element (abbreviated pixel).

By default the spatial reference of the pixel with the coordinates (0, 0) is
located at the upper-left corner of the image.

In digital image processing, an acquisition device converts an image into
a discrete number of pixels. This device assigns a numeric location and
gray-level value which specifies the brightness of pixels.

Properties of a Digitized Image
A digitized image has three basic properties: image resolution, image
definition, and number of planes.

 Chapter 9 Algorithms, Principles of Image Files, and Data Structures

ComponentWorks IMAQ Vision 9-2 © National Instruments Corporation

Image Resolution
The spatial resolution of an image is its number of rows and columns
of pixels. An image composed of m rows and n columns has a resolution
of mn. This image has n pixels along its horizontal axis and m pixels along
its vertical axis.

Image Definition
The definition of an image, also called pixel depth, indicates the number of
colors or shades that you can see in the image. Pixel depth is the number of
bits used to code the intensity of a pixel. For a given definition of n, a pixel
can take 2n different values. For example, if n equals 8-bits, a pixel can take
256 different values ranging from 0 to 255. If n equals 16 bits, a pixel can
take 65,536 different values ranging from 0 to 65,535 or –32,768 to 32,767.

Number of Planes
The number of planes in an image is the number of arrays of pixels that
compose the image. A gray-level or pseudo-color image is composed of
one plane, while a true-color image is composed of three planes (one for the
red component, one for the blue, and one for the green), as shown in the
following figure.

In gray-level images, the red, green, and blue intensities (RGB) of a pixel
combine to produce a single value. This single value is converted back to
an RGB intensity when displayed on a monitor. This conversion is
performed by a color lookup table (CLUT) transformation.

R
G
B

R
G
B

to
 m

on
ito

r
color

(R+G+B)

gray level CLUT
or Palette

Chapter 9 Algorithms, Principles of Image Files, and Data Structures

© National Instruments Corporation 9-3 ComponentWorks IMAQ Vision

In three-plane or true color images, the red, green, and blue intensities of a
pixel are coded into three different values. The image is the combination of
three arrays of pixels corresponding to the red, green, and blue components.

Image Types and Formats
The IMAQ Vision libraries can manipulate three types of images:
gray-level, color, and complex images.

Gray-Level Images
Gray-level images are composed of a single plane of pixels. Standard
gray-level formats are 8-bit PICT (Macintosh only), BMP (PC only),
TIFF, RASTR, and AIPD. Standard 16-bit gray-level formats are TIFF and
AIPD. AIPD is an internal file format that offers the advantage of storing
the spatial calibration of an image. Gray-level images that use other formats
and have a pixel depth of 8-bit, 16-bit or 32-bit can be imported into the
IMAQ Vision libraries.

Color Images
Color images are composed of three planes of pixels in which each pixel
has a red, green, and blue intensity, each coded on 8-bit planes. Color
images coded using the RGB-chunky standard contain an extra 8-bit plane,
called the alpha channel. These images have a definition of 32-bit or
4 × 8-bit. Standard color formats are PICT, BMP, TIFF and AIPD.

Complex Images
Complex images are composed of complex data in which pixel values have
a real part and an imaginary part. Such images are derived from the Fast
Fourier Transform of gray-level images. Four representations of a
complex image can be given: the real part, imaginary part, magnitude, and
phase.

The following table shows how many bytes are used per pixel in gray-level,
color, and complex images. For an identical spatial resolution, a color
image occupies four times the memory space used by an 8-bit gray-level
image and a complex image occupies eight times this amount.

 Chapter 9 Algorithms, Principles of Image Files, and Data Structures

ComponentWorks IMAQ Vision 9-4 © National Instruments Corporation

Table 9-1. Bytes Per Pixel

Image Type Number of Bytes Per Pixel Data

8-bit
 (Unsigned)

 Integer
Gray-Level

(1 byte or
8-bit)

8-bit for the gray-level intensity

16-bit
(Signed)
Integer

Gray-Level

(2 bytes or
16-bit)

16-bit for the gray-level intensity

32-bit
Floating-

Point
Gray-Level

(4 bytes or
32-bit)

32-bit floating for the gray-level intensity

Color

(3 bytes or
24-bit)

8-bit for the
alpha value (not

used)

8-bit for the
red intensity

8-bit for the
green intensity

8-bit for the
blue intensity

Complex

(8 bytes or
64-bit)

32-bit floating for the real part 32-bit floating for the imaginary part

Chapter 9 Algorithms, Principles of Image Files, and Data Structures

© National Instruments Corporation 9-5 ComponentWorks IMAQ Vision

Image Files
An image file is composed of a header followed by pixel values.
Depending on the file format, the header contains information such
as the image horizontal and vertical resolution, its pixel definition,
the physical calibration, and the original palette.

Processing Color Images
Most image-processing and analysis functions apply to 8-bit images.
However, you also can process color images by manipulating their color
components individually.

You can break down a color image into various sets of primary components
such as RGB (red, green, and blue), HSL (hue, saturation, and lightness),
or HSV (hue, saturation, and value). Each component becomes an 8-bit
image and can be processed as any gray-level image.

You can reassemble a color image later from a set of three 8-bit images
taking the place of its RGB, HSL, or HSV components.

 Chapter 9 Algorithms, Principles of Image Files, and Data Structures

ComponentWorks IMAQ Vision 9-6 © National Instruments Corporation

Image Pixel Frame
As introduced earlier, a digital image is a two-dimensional array of pixel
values. Using this definition, you might assume that pixels are arranged in
a regular rectangular frame. However from an image processing point of
view you can consider another grid arrangement, such as a hexagonal pixel
frame which offers the advantage that the six neighbors of a pixel are
equidistant.

The pixels in an image are arranged in a rectangular grid. However, some
image processing algorithms can reproduce a hexagonal neighborhood
using the representations illustrated in the following table. The pixels
considered as neighbors of the given pixel (shown in solid) are indicated
by the shaded pattern.

8-bit Image Processing

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

Red

Green

Blue

Hue

Saturation

Lightness

Hue

Saturation

Value

Color
Image

24

Red

Green

Blue

Hue

Saturation

Lightness

Hue

Saturation

Value

Color
Image

24

Chapter 9 Algorithms, Principles of Image Files, and Data Structures

© National Instruments Corporation 9-7 ComponentWorks IMAQ Vision

Rectangular Frame
Each pixel is surrounded by eight neighbors.

Figure 9-1. Rectangular Frame

If d is the distance from the vertical and horizontal neighbors to the central
pixel, then the diagonal neighbors are at a distance of from the central
pixel.

Pixel Frame Neighborhood Size

Rectangular 3 × 3 5 × 5 7 × 7

Hexagonal 5 × 3 7 × 5 9 × 7

2d

 Chapter 9 Algorithms, Principles of Image Files, and Data Structures

ComponentWorks IMAQ Vision 9-8 © National Instruments Corporation

Hexagonal Frame
Each pixel is surrounded by six neighbors. Each neighbor is found at an
equal distance d from the central pixel.

Figure 9-2. Hexagonal Frame

This notion of pixel frame is important for a category of image processing
functions called neighborhood operations. These functions alter the value
of pixels depending on the intensity values of their neighbors. They include
spatial filters, which alter the intensity of a pixel with respect to variations
in intensities of neighboring pixels, and morphological transformations,
which extract and alter the structure of objects in an image.

© National Instruments Corporation 10-1 ComponentWorks IMAQ Vision

10
Tools and Utilities

This chapter describes the tools and utilities used in IMAQ Vision.

Palettes
At the time an image is displayed on the screen, the value of each pixel is
converted into a red, green, and blue intensity which produces a color. This
conversion is defined in a table called color lookup table (CLUT). For 8-bit
images, it associates a color to each gray-level value and produces a
gradation of colors, called a palette.

With palettes, you can produce different visual representations of an image
without altering the pixel data. Palettes can generate effects such as a
photonegative display or color-coded displays. In the latter case, palettes
are useful for detailing particular image constituents in which the total
number of colors are limited.

Displaying images in different palettes helps emphasize regions with
particular intensities, identify smooth or abrupt gray-level variations,
and convey details that might be lost in a gray-scale image.

In the case of 8-bit resolution, pixels can take 28 or 256 values ranging from
0 to 255. A black and white palette associates different shades of gray to
each value so as to produce a linear and continuous gradation of gray, from
black to white. At this point, the palette can be set up to assign the color
black to the value 0 and white to 255, or vice versa. Other palettes can
reflect linear or nonlinear gradations going from red to blue, light brown to
dark brown, and so forth.

The gray-level value of a pixel acts as an address that is indexed into three
tables, with three values corresponding to a red, green, and blue (RGB)
intensity. This set of three conversion tables defines a palette in which

Chapter 10 Tools and Utilities

ComponentWorks IMAQ Vision 10-2 © National Instruments Corporation

varying amounts of red, green, and blue are mixed to produce a color
representation of the value range [0, 255].

Five pseudo-color palettes are predefined in the programs and libraries.
Each palette emphasizes different shades of gray. However, they all use
the following conventions:

• Gray level 0 is assigned to black.

• Gray level 255 is assigned to white.

Because of these conventions, you can associate bright areas to the
presence of pixels with high gray-level values, and dark areas to the
presence of pixels with low gray-level values.

The following sections introduce the five predefined palettes. The graphs
in each section represent the three RGB lookup tables used by each palette.
The horizontal axes of the graphs represent the input gray-level range
[0, 255], while the vertical axes give the RGB intensities assigned to a
given gray-level value.

B&W (Gray) Palette
This palette has a gradual gray-level variation from black to white. Each
value is assigned to an equal amount of the RGB intensities.

R(g) G(g) B(g)

g
Color Lookup Table

Red

Green

Blue

0 255

Chapter 10 Tools and Utilities

© National Instruments Corporation 10-3 ComponentWorks IMAQ Vision

Temperature Palette
This palette has a gradation from light brown to dark brown. 0 is black and
255 is white.

Rainbow Palette
This palette has a gradation from blue to red with a prominent range
of greens in the middle value range. 0 is black and 255 is white.

Gradient Palette
This palette has a gradation from red to white with a prominent range of
light blue in the upper value range. 0 is black and 255 is white.

Red

Green

Blue

0 255128

Red

Green

Blue

0 255128 19264

Red

Green

Blue

0 255128 192

Chapter 10 Tools and Utilities

ComponentWorks IMAQ Vision 10-4 © National Instruments Corporation

Binary Palette
This palette has 16 cycles of 16 different colors, where g is the gray-level
value and

g = 0 corresponds to R = 0, G = 0, B = 0, which appears black;
g = 1 corresponds to R = 1, G = 0, B = 0,which appears red;
g = 2 corresponds to R = 0, G = 1, B = 0 which appears green;
and so forth.

This periodic palette is appropriate for the display of binary and labeled
images.

Image Histogram
The histogram of an image indicates the quantitative distribution of pixels
per gray-level value. It provides a general description of the appearance of
an image and helps identify various components such as the background,
objects, and noise.

Definition
The histogram is the function H defined on the gray-scale range
[0, …, k, …, 255] such that the number of pixels equal to the gray-level
value k is

H(k) = nk

where k is the gray-level value,

nk is the number of pixels in an image with a gray-level value equal to k,

and ∑ nk = n is the total number of pixels in an image.

Red

Green

Blue

0 16

Chapter 10 Tools and Utilities

© National Instruments Corporation 10-5 ComponentWorks IMAQ Vision

The following histogram plot reveals which gray levels occur frequently
and which occur rarely.

Two types of histograms can be plotted per image: the linear and
cumulative histograms.

In both cases, the horizontal axis represents the gray-level range from
0 to 255. For a gray-level value k, the vertical axis of the linear histogram
indicates the number of pixels nk set to the value k, and the vertical axis of
the cumulative histogram indicates the percentage of pixels set to a value
less than or equal to k.

Linear Histogram
The density function is

HLinear(k) = nk

where HLinear(k) is the number of pixels equal to k.

The probability function is

PLinear(k) = nk /n

where PLinear(k) is the probability that a pixel is equal to k.

Figure 10-1. Linear Vertical Scale

Chapter 10 Tools and Utilities

ComponentWorks IMAQ Vision 10-6 © National Instruments Corporation

Cumulative Histogram
The distribution function is

HCumul(k)=

where HCumul(k) is the number of pixels that are less than or equal to k.

The probability function is

PCumul(k) =

where PCumul(k) is the probability that a pixel is less than or equal to k.

Figure 10-2. Linear Cumulative Scale

Interpretation
The gray-level intervals with a concentrated set of pixels reveal the
presence of significant components in the image and their respective
intensity ranges.

In the previous example, the linear histogram reveals that the image is
composed of three major elements. The cumulative histogram shows that
the two left-most peaks compose approximately 80 percent of the image,
while the remaining 20 percent corresponds to the third peak.

Histogram of Color Images
The histogram of a color image is expressed as a series of three tables
corresponding to the histograms of the three primary components
(R, G, and B; H, S, and L; or H, S, and V).

nk

0

k

∑

nk

n

0

k

∑

Chapter 10 Tools and Utilities

© National Instruments Corporation 10-7 ComponentWorks IMAQ Vision

Histogram Scale
The vertical axis of a histogram plot can be shown in a linear or logarithmic
scale. A logarithmic scale lets you visualize gray-level values used by small
numbers of pixels. These values might appear unused when the histogram
is displayed in a linear scale.

In the case of a logarithmic scale, the vertical axis of the histogram gives
the logarithm of the number of pixels per gray-level value. The use of minor
gray-level values is made more prominent at the expense of the dominant
gray-level values.

The following two figures illustrate the difference between the display
of the histogram of the same image in a linear and logarithmic scale. In
this particular image, three pixels are equal to 0. This information is
unobservable in the linear representation of the histogram but evident in
the logarithmic representation.

Figure 10-3. Linear Vertical Scale

Figure 10-4. Logarithmic Vertical Scale

Chapter 10 Tools and Utilities

ComponentWorks IMAQ Vision 10-8 © National Instruments Corporation

Line Profile
A line profile plots the variations of intensity along a line. This utility is
helpful for examining boundaries between components, quantifying the
magnitude of intensity variations, and detecting the presence of repetitive
patterns. The following figure illustrates a line profile.

The peaks and valleys reveal increases and decreases of the light intensity
along the line selected in the image. Their width and magnitude are
proportional to the size and intensity of their related regions.

For example, a bright object with uniform intensity appears in the plot as
a plateau. The higher the contrast between an object and its surrounding
background, the steeper the slopes of the plateau. Noisy pixels, on the other
hand, produce a series of narrow peaks.

3D View
The 3D view illustrated in the following graphic displays a
three-dimensional perspective of the light intensity in an image. It gives a
relief map of the image in which high-intensity values are associated to
summits and low-intensity values are associated to valleys.

© National Instruments Corporation 11-1 ComponentWorks IMAQ Vision

11
Lookup Transformations

This chapter provides an overview of lookup table transformations.

About Lookup Table Transformations
The lookup table (LUT) transformations are basic image-processing
functions that you can use to improve the contrast and brightness of an
image by modifying the intensity dynamic of regions with poor contrast.
The LUT transformations can highlight details in areas containing
significant information, at the expense of other areas. These functions
include histogram equalization, histogram inversion, Gamma
corrections, Inverse Gamma corrections, logarithmic corrections, and
exponential corrections.

An LUT transformation converts input gray-level values (those from the
source image) into other gray-level values (in the transformed image). The
transfer function has an intended effect on the brightness and contrast of the
image.

Each input gray-level value is given a new value such that

output value = F(input value),

where F is a linear or nonlinear, continuous or discontinuous transfer
function defined over the interval [0, max].

Chapter 11 Lookup Transformations

ComponentWorks IMAQ Vision 11-2 © National Instruments Corporation

In the case of an 8-bit resolution, an LUT is a table of 256 elements. Each
element of the array represents an input gray-level value. Its content
indicates the output value.

Example
In this example, the following source image is used. In the histogram of the
source image, the gray-level intervals [0, 49] and [191, 255] do not contain
significant information.

Using the following LUT transformation, any pixel with a value less than
49 is set to 0, and any pixel with a value greater than 191 is set to 255. The
interval [50, 190] expands to [1, 255], increasing the intensity dynamic of
the regions with a concentration of pixels in the gray-level range [50, 190].

If Ginput is between [0, 49],
then F(Ginput) = 0,
If Ginput is between [191, 255],
then F(Ginput) = 255,
else F(Ginput) = 1.8 × Ginput – 91.

input histogram output histogram

0 56 141 255
0

255

G
ou

tp
ut

Ginput

Chapter 11 Lookup Transformations

© National Instruments Corporation 11-3 ComponentWorks IMAQ Vision

The LUT transform produces the following image. The histogram of the
new image only contains the two peaks of the interval [50, 190].

Predefined Lookup Tables
Eight predefined LUTs are available in IMAQ Vision: Reverse, Equalize,
Logarithmic, Power 1/Y, Square Root, Exponential, Power Y, and Square.

The following table shows the transfer function for each LUT and describes
its effect on an image displayed in a palette that associates dark colors to
low intensity values and bright colors to high intensity values (such as the
B&W or Gray palette).

LUT
Transfer
Function Shading Correction

Equalize Increases the intensity dynamic
by evenly distributing a given
gray-level interval [min, max] over
the full gray scale [0, 255]. Min and
max default values are 0 and 255 for
an 8-bit image.

Reverse Reverses the pixel values, producing
a photometric negative of the image.

Logarithmic
Power 1/Y
Square Root

Increases the brightness and contrast
in dark regions. Decrease the
contrast in bright regions.

Exponential
Power Y
Square

Decreases the brightness and
increases the contrast in bright
regions. Decreases the contrast
in the dark regions.

Chapter 11 Lookup Transformations

ComponentWorks IMAQ Vision 11-4 © National Instruments Corporation

Equalize
The Equalize function alters the gray-level value of pixels so they become
distributed evenly in the defined gray-scale range (0 to 255 for an 8-bit
image). The function associates an equal amount of pixels per constant
gray-level intervals and takes full advantage of the available shades of gray.
Use this transformation to increase the contrast of images in which
gray-level intervals are not used.

The equalization can be limited to a gray-level interval, also called the
equalization range. In this case, the function evenly distributes the pixels
belonging to the equalization range over the full interval
(0 to 255 for an 8-bit image) and the other pixels are set to 0. The image
produced reveals details in the regions that have an intensity in the
equalization range; other areas are cleared.

Example 1
This example shows how an equalization of the interval [0, 255] can spread
the information contained in the three original peaks over larger intervals.
The transformed image reveals more details about each component in the
original image. The following graphics show the original image and
histograms.

An equalization from [0, 255] to [0, 255] produces the following image and
histograms.

Chapter 11 Lookup Transformations

© National Instruments Corporation 11-5 ComponentWorks IMAQ Vision

Note The cumulative histogram of an image after a histogram equalization always has
a linear profile, as seen in the preceding example.

Example 2
This example shows how an equalization of the interval [166, 200] can
spread the information contained in the original third peak (ranging from
166 to 200) to the interval [1, 255]. The transformed image reveals details
about the component with the original intensity range [166, 200] while all
other components are set to black. An equalization from [166, 200] to
[0, 255] produces the following image and histograms.

Reverse
The Reverse function displays the photometric negative of an image.

Goutput = Maximum - Ginput

For an 8-bit image, Maximum = 255. Therefore,

Goutput = 255 – Ginput

0 corresponds to 255
1 corresponds to 254
2 corresponds to 253
...
128 corresponds to 128
...
253 corresponds to 2
254 corresponds to 1
255 corresponds to 0

Chapter 11 Lookup Transformations

ComponentWorks IMAQ Vision 11-6 © National Instruments Corporation

The histogram of a reversed image is equal to the histogram of the original
image after a vertical symmetry centered on the gray-level value 128 (when
processing an 8-bit image).

Example
This example uses the following original image and histogram.

A Reverse transformation produces the following histogram and image.

Logarithmic and Inverse Gamma Correction
The logarithmic and inverse gamma corrections expand low gray-level
ranges while compressing high gray-level ranges. When using the B&W
(or Gray) palette, these transformations increase the overall brightness of
an image and increase the contrast in dark areas at the expense of the
contrast in bright areas.

The following graphs show how the transformations behave. The horizontal
axis represents the input gray-level range and the vertical axis represents
the output gray-level range. Each input gray-level value is plotted
vertically, and its point of intersection with the lookup curve is plotted
horizontally to give an output value.

Chapter 11 Lookup Transformations

© National Instruments Corporation 11-7 ComponentWorks IMAQ Vision

The Logarithmic, Square Root, and Power 1/Y functions expand intervals
containing low gray-level values while compressing intervals containing
high gray-level values.

The higher the gamma coefficient Y, the stronger the intensity correction.
The Logarithmic correction has a stronger effect than the Power 1/Y
function.

The following series of illustrations presents the linear and cumulative
histograms of an image after various LUT transformations. The more the
histogram is compressed on the right, the brighter the image.

The following graphic shows the original image and histograms.

Chapter 11 Lookup Transformations

ComponentWorks IMAQ Vision 11-8 © National Instruments Corporation

A Power 1/Y transformation (where Y = 1.5) produces the following image
and histograms.

A Square Root or Power 1/Y transformation (where Y = 2) produces the
following image and histograms.

A Logarithm transformation produces the following image and histograms.

Exponential and Gamma Correction
The exponential and gamma corrections expand high gray-level ranges
while compressing low gray-level ranges. When using the B&W (or Gray)
palette, these transformations decrease the overall brightness of an image
and increase the contrast in bright areas at the expense of the contrast in
dark areas.

Chapter 11 Lookup Transformations

© National Instruments Corporation 11-9 ComponentWorks IMAQ Vision

The following graphs show how the transformations behave. The horizontal
axis represents the input gray-level range and the vertical axis represents
the output gray-level range. Each input gray-level value is plotted
vertically, and its point of intersection with the lookup curve then is plotted
horizontally to give an output value.

The Exponential, Square, and Power Y functions expand intervals
containing high gray-level values while compressing intervals containing
low gray-level values.

The higher the gamma coefficient Y, the stronger the intensity correction.
The Exponential correction has a stronger effect than the Power Y function.

The following series of illustrations presents the linear and cumulative
histograms of an image after various LUT transformations. The more the
histogram is compressed on the left, the darker the image.

The following graphic shows the original image and histograms.

Chapter 11 Lookup Transformations

ComponentWorks IMAQ Vision 11-10 © National Instruments Corporation

A Power Y transformation (where Y = 1.5) produces the following image
and histograms.

A Square or Power Y transformation (where Y = 2) produces the following
image and histograms.

An Exponential transformation produces the following image and
histograms.

© National Instruments Corporation 12-1 ComponentWorks IMAQ Vision

12
Operators

This chapter describes the arithmetic and logic operators used in
IMAQ Vision.

Concepts and Mathematics
Arithmetic and logic operators mask, combine, and compare images.
Common applications of these operators include time-lapse comparisons,
identification of the union or intersection between images, and
comparisons between several images and a model. Operators also can be
used to threshold or mask images and to alter contrast and brightness.

An arithmetic or logic operation between images is a pixel-by-pixel
transformation. It produces an image in which each pixel derives from the
values of pixels with the same coordinates in other images.

If A is an image with a resolution XY, B is an image with a resolution XY,
and Op is the operator,

then the image N resulting from the combination of A and B through the
operator Op is such that each pixel P of N is assigned the value

pn = (pa)(Op)(pb),

where pa is the value of pixel P in image A, and pb is the value of pixel P in
image B.

Chapter 12 Operators

ComponentWorks IMAQ Vision 12-2 © National Instruments Corporation

Arithmetic Operators
In the case of images with 8-bit resolution, the following equations describe
the usage of the arithmetic operators:

If the resulting pixel value pn is negative, it is set to 0. If it is greater than
255, it is set to 255.

Logic Operators
Logic operators are bit-wise operators. They manipulate gray-level values
coded on one byte at the bit level. The truth tables for logic operators are
presented in the Truth Tables section.

Operator Equation

Multiply pn = min(pa × pb, 255)

Divide pn = max(pa/pb, 0)

Add pn = min(pa + pb, 255)

Subtract pn = max(pa – pb, 0)

Remainder pn = pamodpb

Operator Equation

AND pn = pa AND pb

NAND pn = pa NAND pb

OR pn = pa OR pb

NOR pn = pa NOR pb

XOR pn = pa XOR pb

Difference pn = pa AND (NOT pb)

Mask if pb = 0,
then pn = 0,
else pn = pa

Chapter 12 Operators

© National Instruments Corporation 12-3 ComponentWorks IMAQ Vision

In the case of images with 8-bit resolution, logic operators mainly are
designed to combine gray-level images with mask images composed of
pixels equal to 0 or 255 (in binary format 0 is represented as 00000000 and
255 is represented as 11111111).

The following table illustrates how logic operations can be used to extract
or remove information in an image.

Mean pn = mean[pa, pb]

Max pn = max[pa, pb]

Min pn = min[pa, pb]

For a given pa If pb = 255, then If pb = 0, then

(AND) pa AND 255 = pa pa AND 0 = 0

(NAND) pa NAND 255 = NOT pa pa NAND 0 = 255

(OR) pa OR 255 = 255 pa OR 0 = pa

(NOR) pa NOR 255 = 0 pa NOR 0 = NOT pa

(XOR) pa XOR 255 = NOT pa pa XOR 0 = pa

(Logic Difference) pa – NOT 255 = pa pa – NOT 0 = 0

Operator Equation

Chapter 12 Operators

ComponentWorks IMAQ Vision 12-4 © National Instruments Corporation

Truth Tables
The following truth tables describe the rules used by the logic operators.
The top row and left column give the values of input bits. The cells in the
table give the output value for a given set of two input bits.

AND NAND

b = 0 b = 1 b = 0 b = 1

a = 0

a = 1

0 0 a = 0

a = 1

1 1

0 1 1 0

OR NOR

b = 0 b = 1 b = 0 b = 1

a = 0 0 1 a = 0 1 0

a = 1 1 1 a = 1 0 0

XOR NOT

b = 0 b = 1 NOT a

a = 0 0 1 a = 0 1

a = 1 1 0 a = 1 0

Chapter 12 Operators

© National Instruments Corporation 12-5 ComponentWorks IMAQ Vision

Example 1
The following series of graphics illustrates images in which regions
of interest have been isolated in a binary format, retouched with
morphological manipulations, and finally multiplied by 255. The following
gray-level source image is used for this example.

The following mask image results.

The operation (source image AND mask image) has the effect of restoring
the original intensity of the object regions in the mask.

Chapter 12 Operators

ComponentWorks IMAQ Vision 12-6 © National Instruments Corporation

The operation (source image OR mask image) has the effect of restoring the
original intensity of the background region in the mask.

Example 2
An image reveals two groups of objects that require different processing
results in two binary images. Multiplying each binary image by a constant
and applying an OR operation produces an image that shows their union,
as illustrated in the following series of graphics. The following image
illustrates Object Group #1 × 128.

The following image illustrates Object Group #2 × 255.

Chapter 12 Operators

© National Instruments Corporation 12-7 ComponentWorks IMAQ Vision

Object Group #1 OR Object Group #2 produces a union, as shown in the
following image.

© National Instruments Corporation 13-1 ComponentWorks IMAQ Vision

13
Spatial Filtering

This chapter provides an overview of the spatial filters, including linear and
nonlinear filters, used in IMAQ Vision.

Concept and Mathematics
Spatial filters alter pixel values with respect to variations in light intensity
in their neighborhood. The neighborhood of a pixel is defined by the size
of a matrix, or mask, centered on the pixel itself. These filters can be
sensitive to the presence or absence of light intensity variations. Spatial
filters can serve a variety of purposes, such as the detection of edges along
a specific direction, the contouring of patterns, noise reduction, and detail
outlining or smoothing.

Spatial filters can be divided into two categories:

• Highpass filters emphasize significant variations of the light intensity
usually found at the boundary of objects.

• Lowpass filters attenuate variations of the light intensity. They have
the tendency to smooth images by eliminating details and blurring
edges.

In the case of a 3 × 3 matrix as illustrated in the following illustration, the
value of the central pixel (shown in solid) derives from the values of its
eight surrounding neighbors (shown in shaded pattern).

Chapter 13 Spatial Filtering

ComponentWorks IMAQ Vision 13-2 © National Instruments Corporation

A 5 × 5 matrix specifies 24 neighbors, a 7 × 7 matrix specifies 48 neighbors,
and so forth.

If P(i, j) represents the intensity of the pixel P with the coordinates (i, j), the
pixels surrounding P(i, j) can be indexed as follows (in the case of a 3 × 3
matrix):

A linear filter assigns to P(i, j) a value that is a linear combination of its
surrounding values. For example:

P(i, j) = (P(i, j – 1) + P(i – 1, j) + 2P(i, j) + P(i + 1, j) + P(i, j + 1)).

A nonlinear filter assigns to P(i, j) a value that is not a linear combination
of the surrounding values. For example:

P(i, j) = max(P(i – 1, j – 1), P(i + 1, j – 1), P(i – 1, j + 1), P(i + 1, j + 1)).

P(i – 1, j – 1) P(i, j – 1) P(i + 1, j – 1)

P(i – 1, j) P(i, j) P(i + 1, j)

P(i – 1, j + 1) P(i, j + 1) P(i + 1, j + 1)

��������������������
�����

central pixel

neighbors

filtering
function

mask

Chapter 13 Spatial Filtering

© National Instruments Corporation 13-3 ComponentWorks IMAQ Vision

Spatial Filter Classification Summary
The following table describes the classification of spatial filters

.

Linear Filters or Convolution Filters
A convolution is a mathematical function that replaces each pixel by a
weighted sum of its neighbors. The matrix defining the neighborhood of the
pixel also specifies the weight assigned to each neighbor. This matrix is
called the convolution kernel.

For each pixel P(i, j) in an image (where i and j represent the coordinates of
the pixel), the convolution kernel is centered on P(i, j). Each pixel masked by
the kernel is multiplied by the coefficient placed on top of it. P(i, j) becomes
the sum of these products.

In the case of a 3 × 3 neighborhood, the pixels surrounding P(i, j) and the
coefficients of the kernel, K, can be indexed as follows:

The pixel P(i, j) is given the value (1/N)Σ K(a, b)P(a, b), with a ranging from
(i – 1) to (i + 1), and b ranging from (j – 1) to (j + 1). N is the normalization
factor, equal to Σ K(a, b) or 1, whichever is greater.

Finally, if the new value P(i, j) is negative, it is set to 0. If the new value
P(i, j) is greater than 255, it is set to 255 (in the case of 8-bit resolution).

The greater the absolute value of a coefficient K(a, b), the more the pixel
P(a, b) contributes to the new value of P(i, j). If a coefficient K(a, b) is null, the
neighbor P(a, b) does not contribute to the new value of P(i, j) (notice that
P(a, b) might be P(i, j) itself).

Highpass Filters Lowpass Filters

Linear Filters Gradient,
Laplacian

Smoothing,
Gaussian

Nonlinear Filters Gradient, Roberts, Sobel, Prewitt,
Differentiation, Sigma

Median, Nth Order,
Lowpass

P(i – 1, j – 1) P(i, j – 1) P(i + 1, j – 1) K(i – 1, j – 1) K(i, j – 1) K(i + 1, j – 1)

P(i – 1, j) P(i, j) P(i + 1, j) K(i – 1, j) K(i, j) K(i + 1, j)

P(i – 1, j + 1) P(i, j + 1) P(i + 1, j + 1) K(i – 1, j + 1) K(i, j + 1) K(i + 1, j + 1)

Chapter 13 Spatial Filtering

ComponentWorks IMAQ Vision 13-4 © National Instruments Corporation

If the convolution kernel is

0 0 0
–2 1 2
0 0 0

then

 P(i, j) = (–2P(i – 1, j) + P(i, j) + 2P(i + 1, j)).

If the convolution kernel is

0 1 0
1 0 1
0 1 0

then

 P(i, j) = (P(i, j – 1) + P(i – 1, j)+ P(i + 1, j) + P(i, j + 1)).

If the kernel contains both negative and positive coefficients, the transfer
function is equivalent to a weighted differentiation, and produces a
sharpening or highpass filter. Typical highpass filters include gradient and
Laplacian filters.

If all coefficients in the kernel are positive, the transfer function is
equivalent to a weighted summation and produces a smoothing or lowpass
filter. Typical lowpass filters include smoothing and Gaussian filters.

Gradient Filter
A gradient filter highlights the variations of light intensity along a specific
direction, which has the effect of outlining edges and revealing texture.

Example
This example uses the following source image.

Chapter 13 Spatial Filtering

© National Instruments Corporation 13-5 ComponentWorks IMAQ Vision

A gradient filter extracts horizontal edges to produce the following image.

A gradient filter highlights diagonal edges to produce the following image.

Kernel Definition
A gradient convolution filter is a first order derivative and its kernel uses
the following model:

a –b c
b x –d
c d –a

where a, b, and c are integers and x = 0 or 1.

This kernel has an axis of symmetry that runs between the positive and
negative coefficients of the kernel and through the central element. This
axis of symmetry gives the orientation of the edges to outline.

Chapter 13 Spatial Filtering

ComponentWorks IMAQ Vision 13-6 © National Instruments Corporation

Filter Axis and Direction
The axis of symmetry of the gradient kernel gives the orientation of the
edges to outline. For example:

where a = 0, b = –1, c = –1, d = –1, and x = 0, the kernel is the following:

0 1 1
–1 0 1
–1 –1 0

The axis of symmetry is at 135 degrees.

For a given direction, you can design a gradient filter to highlight or darken
the edges along that direction. The filter actually is sensitive to the
variations of intensity perpendicular to the axis of symmetry of its kernel.
Given the direction D going from the negative coefficients of the kernel
towards the positive coefficients, the filter highlights the pixels where the
light intensity increases along the direction D, and darkens the pixels where
the light intensity decreases.

Chapter 13 Spatial Filtering

© National Instruments Corporation 13-7 ComponentWorks IMAQ Vision

Examples
The following two kernels emphasize edges oriented at 135 degrees.

Note Applying Gradient #1 to an image gives the same results as applying Gradient #2
to its photometric negative, because reversing the lookup table of an image
converts bright regions into dark regions and vice versa.

Edge Extraction and Edge Highlighting
The gradient filter has two effects, depending on whether the central
coefficient x is equal to 1 or 0:

• If the central coefficient is null (x = 0), the gradient filter highlights
the pixels where variations of light intensity occur along a direction
specified by the configuration of the coefficients a, b, c, and d. The
transformed image contains black-white borders at the original edges
and the shades of the overall patterns are darkened.

Gradient #1 Gradient #2

0 –1 –1
1 0 –1
1 1 0

Gradient #1 highlights pixels where the light
intensity increases along the direction going
from northeast to southwest. It darkens pixels
where the light intensity decreases along that
same direction. This processing outlines the
northeast front edges of bright regions such as
the ones in the illustration.

0 1 1
–1 0 1
–1 –1 0

Gradient #2 highlights pixels where the light
intensity increases along the direction going
from southwest to northeast. It darkens pixels
where the light intensity decreases along that
same direction. This processing outlines the
southwest front edges of bright regions such as
the ones in the illustration.

p. .

Chapter 13 Spatial Filtering

ComponentWorks IMAQ Vision 13-8 © National Instruments Corporation

• If the central coefficient is equal to 1 (x = 1), the gradient filter detects
the same variations as mentioned above, but superimposes them over
the source image. The transformed image looks like the source image
with edges highlighted. You can use this type of kernel for grain
extraction and perception of texture.

Notice that the kernel Gradient #2 can be decomposed as follows:

Note The convolution filter using the second kernel on the right side of the equation
reproduces the source image. All neighboring pixels are multiplied by 0 and the
central pixel remains equal to itself: (P(i, j) = 1 × P(i, j)).

This equation indicates that Gradient #2 adds the edges extracted by the
Gradient #1 to the source image.

Gradient #2 = Gradient #1 + Source Image

Source Image Gradient #1

–1 –1 0
–1 0 1
0 1 1

Filtered Image

Source Image Gradient #2

–1 –1 0
–1 1 1
0 1 1

Filtered Image

–1 –1 0
–1 1 1
0 1 1

=
–1 –1 0
–1 0 1
0 1 1

+
0 0 0
0 1 0
0 0 0

Chapter 13 Spatial Filtering

© National Instruments Corporation 13-9 ComponentWorks IMAQ Vision

Edge Thickness
The larger the kernel, the larger the edges. The following image illustrates
gradient west–east 3 × 3.

The following image illustrates gradient west–east 5 × 5.

Finally, the following image illustrates gradient west–east 7 × 7.

Chapter 13 Spatial Filtering

ComponentWorks IMAQ Vision 13-10 © National Instruments Corporation

Predefined Gradient Kernels
The tables in this section list the predefined gradient kernels.

Prewitt Filters
The Prewitt filters have the following kernels. The notations West (W),
South (S), East (E), and North (N) indicate which edges of bright regions
they outline.

Table 13-1. Prewitt Filters

W/Edge W/Image SW/Edge SW/Image

–1 0 1
–1 0 1
–1 0 1

–1 0 1
–1 1 1
–1 0 1

0 1 1
–1 0 1
–1 –1 0

0 1 1
–1 1 1
–1 –1 0

S/Edge S/Image SE/Edge SE/Image

1 1 1
0 0 0

–1 –1 –1

1 1 1
0 1 0

–1 –1 –1

1 1 0
1 0 –1
0 –1 –1

1 1 0
1 1 –1
0 –1 –1

E/Edge E/Image NE/Edge NE/Image

1 0 –1
1 0 –1
1 0 –1

1 0 –1
1 1 –1
1 0 –1

0 –1 –1
1 0 –1
1 1 0

0 –1 –1
1 1 –1
1 1 0

N/Edge N/Image NW/Edge NW/Image

–1 –1 –1
0 0 0
1 1 1

–1 –1 –1
0 1 0
1 1 1

–1 –1 0
–1 0 1
0 1 1

–1 –1 0
–1 1 1
0 1 1

Chapter 13 Spatial Filtering

© National Instruments Corporation 13-11 ComponentWorks IMAQ Vision

Sobel Filters
The Sobel filters are very similar to the Prewitt filters except that they
highlight light intensity variations along a particular axis that is assigned a
stronger weight. The Sobel filters have the following kernels. The notations
West (W), South (S), East (E), and North (N) indicate which edges of bright
regions they outline.

Table 13-2. Sobel Filters

W/Edge W/Image SW/Edge SW/Image

–1 0 1
–2 0 2
–1 0 1

–1 0 1
–2 1 2
–1 0 1

0 1 2
–1 0 1
–2 –1 0

0 1 2
–1 1 1
–2 –1 0

S/Edge S/Image SE/Edge SE/Image

1 2 1
0 0 0

–1 –2 –1

1 2 1
0 1 0

–1 –2 –1

2 1 0
1 0 –1
0 –1 –2

2 1 0
1 1 –1
0 –1 –2

E/Edge E/Image NE/Edge NE/Image

1 0 –1
2 0 –2
1 0 –1

1 0 –1
2 1 –2
1 0 –1

0 –1 –2
1 0 –1
2 1 0

0 –1 –2
1 1 –1
2 1 0

N/Edge N/Image NW/Edge NW/Image

–1 –2 –1
0 0 0
1 2 1

–1 –2 –1
0 1 0
1 2 1

–2 –1 0
–1 0 1
0 1 2

–2 –1 0
–1 1 1
0 1 2

Chapter 13 Spatial Filtering

ComponentWorks IMAQ Vision 13-12 © National Instruments Corporation

The following tables list the predefined gradient 5 × 5 and 7 × 7 kernels.

Laplacian Filters
A Laplacian filter highlights the variation of the light intensity
surrounding a pixel. The filter extracts the contour of objects and outlines
details. Unlike the gradient filter, it is omni-directional.

Example
This example uses the following source image.

Table 13-3. Gradient 5 × 5

W/Edge W/Image

0 –1 0 1 0
–1 –2 0 2 1
–1 –2 0 2 1
–1 –2 0 2 1
0 –1 0 1 0

0 –1 0 1 0
–1 –2 0 2 1
–1 –2 1 2 1
–1 –2 0 2 1
0 –1 0 1 0

Table 13-4. Gradient 7 × 7

W/Edge W/Image

0 –1 –1 0 1 1 0
–1 –2 –2 0 2 2 1
–1 –2 –3 0 3 2 1
–1 –2 –3 0 3 2 1
–1 –2 –3 0 3 2 1
–1 –2 –3 0 3 2 1
0 –1 –1 0 1 1 0

0 –1 –1 0 1 1 0
–1 –2 –2 0 2 2 1
–1 –2 –3 0 3 2 1
–1 –2 –3 1 3 2 1
–1 –2 –3 0 3 2 1
–1 –2 –3 0 3 2 1
0 –1 –1 0 1 1 0

Chapter 13 Spatial Filtering

© National Instruments Corporation 13-13 ComponentWorks IMAQ Vision

A Laplacian filter extracts contours to produce the following image.

A Laplacian filter highlights contours to produce the following image.

Kernel Definition
The Laplacian convolution filter is a second order derivative and its
kernel uses the following model:

a d c
b x b
c d a

where a, b, c, and d are integers.

The Laplacian filter has two different effects, depending on whether the
central coefficient x is equal to or greater than the sum of the absolute
values of the outer coefficients:

 .x 2 a b c d+ + +()≥

Chapter 13 Spatial Filtering

ComponentWorks IMAQ Vision 13-14 © National Instruments Corporation

Contour Extraction and Highlighting
If the central coefficient is equal to this sum , the
Laplacian filter extracts the pixels where significant variations of light
intensity are found. The presence of sharp edges, boundaries between
objects, modification in the texture of a background, noise, and other
effects can cause these variations. The transformed image contains white
contours on a black background.

Examples
Notice the following source image, Laplacian kernel, and filtered image.

If the central coefficient is greater than the sum of the outer coefficients
(x > 2(a + b + c + d)), the Laplacian filter detects the same variations as
mentioned above, but superimposes them over the source image. The
transformed image looks like the source image, with all significant
variations of the light intensity highlighted.

Source Image Laplacian #1

–1 –1 –1
–1 8 –1
–1 –1 –1

Filtered Image

Source Image Laplacian #2

–1 –1 –1
–1 9 –1
–1 –1 –1

Filtered Image

x 2 a b c d+ + +()=()

Chapter 13 Spatial Filtering

© National Instruments Corporation 13-15 ComponentWorks IMAQ Vision

Notice that the Laplacian #2 kernel can be decomposed as follows:

Note The convolution filter using the second kernel on the right side of the equation
reproduces the source image. All neighboring pixels are multiplied by 0 and the
central pixel remains equal to itself: (P(i, j) = 1 × P(i, j)).

This equation indicates that the Laplacian #2 kernel adds the contours
extracted by the Laplacian #1 kernel to the source image.

Laplacian #2 = Laplacian #1 + Source Image

For example, if the central coefficient of Laplacian #2 kernel is 10, the
Laplacian filter adds the contours extracted by Laplacian #1 kernel to
the source image times 2, and so forth. A greater central coefficient
corresponds to less-prominent contours and details highlighted by the filter.

Contour Thickness
Larger kernels correspond to larger contours. The following image is a
Laplacian 3 × 3.

The following image is a Laplacian 5 × 5.

–1 –1 –1
–1 9 –1
–1 1 –1

=
–1 –1 –1
–1 8 –1
–1 –1 –1

+
0 0 0
0 1 0
0 0 0

Chapter 13 Spatial Filtering

ComponentWorks IMAQ Vision 13-16 © National Instruments Corporation

The following image is a Laplacian 7 × 7.

Predefined Laplacian Kernels
The following tables list the predefined Laplacian kernels.

Table 13-5. Laplacian 3 × 3

Contour 4 + Image × 1 + Image × 2

0 –1 0
–1 4 –1
0 –1 0

0 –1 0
–1 5 –1
0 –1 0

0 –1 0
–1 6 –1
 0 –1 0

Contour 8 + Image × 1 + Image × 2

–1 –1 –1
–1 8 –1
–1 –1 –1

–1 –1 –1
–1 9 –1
–1 –1 –1

–1 –1 –1
–1 10 –1
–1 –1 –1

Contour 12 + Image × 1

–1 –2 –1
–2 12 –2
–1 –2 –1

–1 –2 –1
–2 13 –2
–1 –2 –1

Table 13-6. Laplacian 5 × 5

Contour 24 + Image × 1

–1 –1 –1 –1 –1
–1 –1 –1 –1 –1
–1 –1 24 –1 –1
–1 –1 –1 –1 –1
–1 –1 –1 –1 –1

–1 –1 –1 –1 –1
–1 –1 –1 –1 –1
–1 –1 25 –1 –1
–1 –1 –1 –1 –1
–1 –1 –1 –1 –1

Chapter 13 Spatial Filtering

© National Instruments Corporation 13-17 ComponentWorks IMAQ Vision

Smoothing Filter
A smoothing filter attenuates the variations of light intensity in the
neighborhood of a pixel. It smoothes the overall shape of objects, blurs
edges, and removes details.

Example
This example uses the following source image.

A smoothing filter produces the following image.

Table 13-7. Laplacian 7 × 7

Contour 48 + Image × 1

–1 –1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1
–1 –1 –1 48 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1

–1 –1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1
–1 –1 –1 49 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1

Chapter 13 Spatial Filtering

ComponentWorks IMAQ Vision 13-18 © National Instruments Corporation

Kernel Definition
A smoothing convolution filter is an averaging filter and its kernel uses the
following model:

a d c
b x b
c d a

where a, b, c, and d are integers and x = 0 or 1.

Because all the coefficients in a smoothing kernel are positive, each central
pixel becomes a weighted average of its neighbors. The stronger the weight
of a neighboring pixel, the more influence it has on the new value of the
central pixel.

For a given set of coefficients (a, b, c, d), a smoothing kernel with a central
coefficient equal to 0 (x = 0) has a stronger blurring effect than a smoothing
kernel with a central coefficient equal to 1 (x = 1).

Examples
Notice the following smoothing kernels and filtered images. A larger
kernel size corresponds to a stronger smoothing effect.

Kernel #1

0 1 0
1 0 1
0 1 0

Filtered Image

Kernel #2

2 2 2
2 1 2
2 2 2

Filtered Image

Chapter 13 Spatial Filtering

© National Instruments Corporation 13-19 ComponentWorks IMAQ Vision

Predefined Smoothing Kernels
The following tables list the predefined smoothing kernels.

Kernel #3

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Filtered Image

Kernel #4

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

Filtered Image

Table 13-8. Smoothing 3 × 3

0 1 0
1 0 1
0 1 0

0 1 0
1 1 1
0 1 0

0 2 0
2 1 2
0 2 0

0 4 0
4 1 4
0 4 0

1 1 1
1 0 1
1 1 1

1 1 1
1 1 1
1 1 1

2 2 2
2 1 2
2 2 2

4 4 4
4 1 4
4 4 4

Table 13-9. Smoothing 5 × 5

1 1 1 1 1
1 1 1 1 1
1 1 0 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Chapter 13 Spatial Filtering

ComponentWorks IMAQ Vision 13-20 © National Instruments Corporation

Gaussian Filters
A Gaussian filter attenuates the variations of light intensity in the
neighborhood of a pixel. It smoothes the overall shape of objects and
attenuates details. It is similar to a smoothing filter, but its blurring effect
is more subdued.

Example
This example uses the following source image.

A Gaussian filter produces the following image.

Table 13-10. Smoothing 7 × 7

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

Chapter 13 Spatial Filtering

© National Instruments Corporation 13-21 ComponentWorks IMAQ Vision

Kernel Definition

A Gaussian convolution filter is an averaging filter and its kernel uses the
following model:

a d c
b x b
c d a

where a, b, c, and d are integers and x > 1.

Since all the coefficients in a Gaussian kernel are positive, each pixel
becomes a weighted average of its neighbors. The stronger the weight of a
neighboring pixel, the more influence it has on the new value of the central
pixel.

Unlike a smoothing kernel, the central coefficient of a Gaussian filter is
greater than 1. Therefore the original value of a pixel is multiplied by a
weight greater than the weight of any of its neighbors. As a result, a greater
central coefficient corresponds to a more subtle smoothing effect. A larger
kernel size corresponds to a stronger smoothing effect.

Predefined Gaussian Kernels
The following tables list the predefined Gaussian kernels.

Table 13-11. Gaussian 3 × 3

0 1 0
1 2 1
0 1 0

0 1 0
1 4 1
0 1 0

1 1 1
1 2 1
1 1 1

1 1 1
1 4 1
1 1 1

1 2 1
2 4 2
1 2 1

1 4 1
4 16 4
1 4 1

Table 13-12. Gaussian 5 × 5

1 2 4 2 1
2 4 8 4 2
4 8 16 8 4
2 4 8 4 2
1 2 4 2 1

Chapter 13 Spatial Filtering

ComponentWorks IMAQ Vision 13-22 © National Instruments Corporation

Nonlinear Filters
A nonlinear filter replaces each pixel value with a nonlinear function of
its surrounding pixels. Like the convolution filters, the nonlinear filters
operate on a neighborhood. The following notations describe the behavior
of the nonlinear spatial filters.

If P(i, j) represents the intensity of the pixel P with the coordinates (i, j), the
pixels surrounding P(i, j) can be indexed as follows (in the case of a 3 × 3
matrix):

In the case of a 5 × 5 neighborhood, the i and j indexes vary from –2 to 2,
and so forth. The series of pixels including P(i, j) and its surrounding pixels
is annotated as P(n, m).

Nonlinear Prewitt Filter
The nonlinear Prewitt filter is a highpass filter that extracts the outer
contours of objects. It highlights significant variations of the light intensity
along the vertical and horizontal axes.

Table 13-13. Gaussian 7 × 7

1 1 2 2 2 1 1
1 2 2 4 2 2 1
2 2 4 8 4 2 2
2 4 8 16 8 4 2
2 2 4 8 4 2 2
1 2 2 4 2 2 1
1 1 2 2 2 1 1

P(i – 1, j – 1) P(i, j – 1) P(i + 1, j – 1)

P(i – 1, j) P(i, j) P(i + 1, j)

P(i – 1, j + 1) P(i, j + 1) P(i + 1, j + 1)

Chapter 13 Spatial Filtering

© National Instruments Corporation 13-23 ComponentWorks IMAQ Vision

Each pixel is assigned the maximum value of its horizontal and vertical
gradient obtained with the following Prewitt convolution kernels:

P(i, j) = max[|P(i + 1, j – 1) – P(i – 1, j – 1) + P(i + 1, j) – P(i – 1, j) + P(i + 1, j + 1) – P(i – 1, j + 1)|,
|P(i – 1, j + 1) – P(i – 1, j – 1) + P(i, j + 1) – P(i, j – 1) + P(i + 1, j + 1) – P(i + 1, j – 1)|]

Nonlinear Sobel Filter
The nonlinear Sobel filter is a highpass filter that extracts the outer
contours of objects. It highlights significant variations of the light intensity
along the vertical and horizontal axes.

Each pixel is assigned the maximum value of its horizontal and vertical
gradient obtained with the following Sobel convolution kernels:

As opposed to the Prewitt filter, the Sobel filter assigns a higher weight to
the horizontal and vertical neighbors of the central pixel:

P(i, j) = max[|P(i + 1, j – 1) – P(i – 1, j – 1) + 2P(i + 1, j) – 2P(i – 1, j) + P(i + 1, j + 1) – P(i – 1, j + 1)|,
|P(i – 1, j + 1) – P(i – 1, j – 1) + 2P(i, j + 1) – 2P(i, j – 1) + P(i + 1, j + 1) – P(i + 1, j – 1)|]

Kernel #1 Kernel #2

–1 0 1
–1 0 1
–1 0 1

–1 –1 –1
0 0 0
1 1 1

Kernel #1 Kernel #2

–1 0 1
–2 0 2
–1 0 1

–1 –2 –1
0 0 0
1 2 1

Chapter 13 Spatial Filtering

ComponentWorks IMAQ Vision 13-24 © National Instruments Corporation

Example
This example uses the following source image.

A nonlinear Prewitt filter produces the following image.

A nonlinear Sobel filter produces the following image.

Both filters outline the contours of the objects. Because of the different
convolution kernels they combine, the nonlinear Prewitt has the tendency
to outline curved contours while the nonlinear Sobel extracts square
contours. This difference is noticeable when observing the outlines of
isolated pixels.

Chapter 13 Spatial Filtering

© National Instruments Corporation 13-25 ComponentWorks IMAQ Vision

Nonlinear Gradient Filter
The nonlinear gradient filter outlines contours where an intensity
variation occurs along the vertical axis.

The new value of a pixel becomes the maximum absolute value between its
deviation from the upper neighbor and the deviation of its two left
neighbors.

P(i, j) = max[|P(i, j – 1) – P(i, j)|, |P(i – 1, j – 1) – P(i – 1, j)|]

Roberts Filter
The Roberts filter outlines the contours that highlight pixels where an
intensity variation occurs along the diagonal axes.

The new value of a pixel becomes the maximum absolute value between the
deviation of its upper-left neighbor and the deviation of its two other
neighbors.

P(i, j) = max[|P(i – 1, j – 1) – P(i, j)|, |P(i, j – 1) – P(i – 1, j)|]

Differentiation Filter
The differentiation filter produces continuous contours by highlighting
each pixel where an intensity variation occurs between itself and its three
upper-left neighbors.

The new value of a pixel becomes the absolute value of its maximum
deviation from its upper-left neighbors.

P(i, j) = max[|P(i – 1, j) – P(i, j)|, |P(i – 1, j – 1) – P(i, j)|, |P(i, j – 1) – P(i, j)|]

Pi–1,j –1

Pi–1,j

Pi,j –1

Pi,j

Pi–1,j–1

Pi–1,j

Pi,j –1

Pi,j

Pi–1,j –1

Pi–1,j

Pi,j –1

Pi,j

Chapter 13 Spatial Filtering

ComponentWorks IMAQ Vision 13-26 © National Instruments Corporation

Sigma Filter
The Sigma filter is a highpass filter. It outlines contours and details by
setting pixels to the mean value found in their neighborhood, if their
deviation from this value is not significant.

Given M, the mean value of P(i, j) and its neighbors and S, their standard
deviation, each pixel P(i, j) is set to the mean value M if it falls inside the
range [M – S, M + S].

Lowpass Filter
The lowpass filter reduces details and blurs edges by setting pixels to the
mean value found in their neighborhood, if their deviation from this value
is large.

Given M, the mean value of P(i, j) and its neighbors and S, their standard
deviation, each pixel P(i, j) is set to the mean value M if it falls outside the
range [M – S, M + S].

If
then
else

P(i, j) – M > S,
P(i, j) = P(i, j),
P(i, j) = M.

 If
then
else

P(i, j) – M < S,
P(i, j) = P(i, j),
P(i, j) = M.

Chapter 13 Spatial Filtering

© National Instruments Corporation 13-27 ComponentWorks IMAQ Vision

Median Filter
The median filter is a lowpass filter. It assigns to each pixel the median
value of its neighborhood, effectively removing isolated pixels and
reducing details. However, the median filter does not blur the contour of
objects.

P(i, j) = median value of the series [P(n, m)].

Nth Order Filter
The Nth order filter is an extension of the median filter. It assigns to each
pixel the Nth value of its neighborhood (when sorted in increasing order).
The value N specifies the order of the filter, which you can use to moderate
the effect of the filter on the overall light intensity of the image. A lower
order corresponds to a darker transformed image; a higher order
corresponds to a brighter transformed image.

Each pixel is assigned the Nth value of its neighborhood, N being specified
by the user.

P(i, j) = Nth value in the series [P(n, m)],

where the P(n, m) are sorted in increasing order.

The following example uses a 3 × 3 neighborhood:

The following table shows the new output value of the central pixel for each
Nth order value:

Note that for a given filter size f, the Nth order can rank from 0 to f 2 – 1.
For example, in the case of a filter size 3, the Nth order ranges from 0 to 8
(32 – 1).

P(i – 1, j – 1) P(i, j – 1) P(i + 1, j – 1) 13 10 9

P(i – 1, j) P(i, j) P(i + 1, j) = 12 4 8

P(i – 1, j + 1) P(i, j + 1) P(i + 1, j + 1) 5 5 6

Nth Order 0 1 2 3 4 5 6 7 8

 New Pixel Value 4 5 5 6 8 9 10 12 13

Chapter 13 Spatial Filtering

ComponentWorks IMAQ Vision 13-28 © National Instruments Corporation

Examples
To see the effect of the Nth order filter, notice the example of an image with
bright objects and a dark background. When viewing this image with the
B&W (or Gray) palette, the objects have higher gray-level values than the
background.

For a Given Filter Size f × f Example of a Filter Size 3 × 3

• If N < (f 2 – 1)/2, the Nth order filter has the
tendency to erode bright regions (or dilate
dark regions).

• If N = 0, each pixel is replaced by its local
minimum.

Order 0

(smoothes image,
erodes bright
objects)

• If N = (f 2 – 1)/2, each pixel is replaced by its
local median value. Dark pixels isolated in
objects are removed, as well as bright pixels
isolated in the background. The overall area of
the background and object regions does not
change.

Order 4

(equivalent to a
median filter)

• If N > (f 2 – 1)/2, the Nth order filter has the
tendency to dilate bright regions (or erode
dark regions).

• If N = f 2 – 1, each pixel is replaced by its local
maximum.

Order 8

(smoothes image,
dilates bright
objects)

© National Instruments Corporation 14-1 ComponentWorks IMAQ Vision

14
Frequency Filtering

This chapter describes the frequency filters used in IMAQ Vision.

Introduction to Frequency Filters
Frequency filters alter pixel values with respect to the periodicity and
spatial distribution of the variations in light intensity in the image.
Highpass frequency filters help isolate abruptly varying patterns which
correspond to sharp edges, details, and noise. Lowpass frequency filters
help emphasize gradually varying patterns such as objects and the
background. Frequency filters do not apply directly to a spatial image, but
to its frequency representation. The latter is obtained through a function
called the Fast Fourier Transform (FFT). It reveals information about the
periodicity and dispersion of the patterns found in the source image.

The spatial frequencies seen in an FFT image can be filtered and the Inverse
FFT then restores a spatial representation of the filtered FFT image.

In an image, details and sharp edges are associated to high spatial
frequencies because they introduce significant gray-level variations over
short distances. Gradually varying patterns are associated to low spatial
frequencies.

For example, an image can have extraneous noise such as periodic stripes
introduced during the digitization process. In the frequency domain, the
periodic pattern is reduced to a limited set of high spatial frequencies.
Truncating these particular frequencies and converting the filtered FFT
image back to the spatial domain produces a new image in which the grid
pattern has disappeared, yet the overall features remain.

Chapter 14 Frequency Filtering

ComponentWorks IMAQ Vision 14-2 © National Instruments Corporation

Lowpass FFT Filters
A lowpass FFT filter attenuates or removes high frequencies present in
the FFT plane. It has the effect of suppressing information related to rapid
variations of light intensities in the spatial image. In this case, the Inverse
FFT command produces an image in which noise, details, texture, and
sharp edges are smoothed.

Highpass FFT Filters
A highpass FFT filter attenuates or removes low frequencies present in
the FFT plane. It has the effect of suppressing information related to slow
variations of light intensities in the spatial image. In this case, the Inverse
FFT command produces an image in which overall patterns are attenuated
and details are emphasized.

Mask FFT Filters
A mask filter removes frequencies contained in a mask specified by the
user. Depending on the mask definition, this filter may behave as a
lowpass, bandpass, highpass, or any type of selective filter.

Chapter 14 Frequency Filtering

© National Instruments Corporation 14-3 ComponentWorks IMAQ Vision

Definition
The spatial frequencies of an image are calculated by a function called the
Fourier Transform. It is defined in the continuous domain as:

where f(x, y) is the light intensity of the point (x, y), and (u, v) are the
horizontal and vertical spatial frequencies. The Fourier Transform assigns
a complex number to each set (u, v).

Inversely, a Fast Fourier Transform F(u, v) can be transformed into a spatial
image f (x, y) using the following formula:

In the discrete domain, the Fourier Transform is calculated with an efficient
algorithm called the Fast Fourier Transform (FFT). This algorithm requires
that the resolution of the image be . Notice that the values n and m
can be different, which indicates that the image does not have to be square.

where NM is the resolution of the spatial image f(x, y).

Because , F(u, v) is composed of an
infinite sum of sine and cosine terms. Each pair (u, v) determines the
frequency of its corresponding sine and cosine pair. For a given set (u, v),
note that all values f (x, y) contribute to F(u, v). Because of this complexity,
the FFT calculation is time consuming.

The relation between the sampling increments in the spatial domain
(x, y) and the frequency domain (u, v) is:

F u v,() f x y,()e j2π xu yv+()– x ydd
∞–

∞

∫
∞–

∞

∫=

f x y,() F u v,()e
j2π ux

N
------ vy

M
-----+

v 0=

M 1–

∑
u 0=

N 1–

∑=

2n 2m×

F u v,() 1
NM
--------- f x y,()e

j2π– ux
N
------ vy

M
-----+

y 0=

M 1–

∑
x 0=

N 1–

∑=

e j 2πux– 2πuxcos j 2πuxsin–=

∆ ∆ ∆ ∆

∆u 1
N ∆x×
-----------------= ∆v 1

M ∆y×
------------------=

Chapter 14 Frequency Filtering

ComponentWorks IMAQ Vision 14-4 © National Instruments Corporation

The FFT of an image, F(u, v), is a two dimensional array of complex
numbers, or a complex image. It represents the frequencies of occurrence
of light intensity variations in the spatial domain. The low frequencies (u, v)
correspond to smooth and gradual intensity variations found in the overall
patterns of the source image. The high frequencies (u, v) correspond to
abrupt and short intensity variations found at the edges of objects, around
noisy pixels, and around details.

FFT Display
An FFT image can be visualized using any of its four complex components:
real part, imaginary part, magnitude, and phase. The relation between these
components is expressed by

F(u, v) = R(u, v) + jI (u, v),

where R(u, v) is the real part and I(u, v) is the imaginary part, and

F(u, v) = ,

where is the magnitude and ϕ(u, v) is the phase.

The magnitude of F(u, v) is also called the Fourier spectrum and is equal
to

The Fourier spectrum to the power of two is known as the power spectrum
or spectral density.

The phase ϕ(u, v) is also called the phase angle and is equal to

.

Given an image with a resolution NM and given x and y the spatial step
increments, the FFT of the source image has the same resolution NM and
its frequency step increments u and v, which are defined in the
following equations:

.

F u v,() ejϕ u v,〈 〉×

F u v,()

F u v,() R u v,()2 I+ u v,()2=

ϕ u v,() I u v,()
R u v,()
-----------------atan=

∆ ∆

∆ ∆

∆u 1
N ∆x×
-----------------= ∆v 1

M ∆y×
------------------=

Chapter 14 Frequency Filtering

© National Instruments Corporation 14-5 ComponentWorks IMAQ Vision

The FFT of an image has the following two properties:

• It is periodic: F(u, v) = F(u + N, v + M)

• It is conjugate-symmetric: F(u, v) = F*(–u, –v)

These properties result in two possible representations of the Fast Fourier
Transform of an image: the standard representation and the optical
representation.

Standard Representation
High frequencies are grouped at the center while low frequencies are
located at the edges. The constant term, or null frequency is in the
upper-left corner of the image. The frequency range is

.0 N∆u,] 0 M∆v,[×

Chapter 14 Frequency Filtering

ComponentWorks IMAQ Vision 14-6 © National Instruments Corporation

Optical Representation
Low frequencies are grouped at the center while high frequencies are
located at the edges. The constant term, or null frequency, is at the center
of the image. The frequency range is

.

.

You can switch from the standard representation to the optical
representation by permuting the A, B, C, and D quarters.

Intensities in the FFT image are proportional to the amplitude of the
displayed component.

N
2
----∆u– N

2
----∆u, M

2
-----∆v– M

2
-----∆v,×

Chapter 14 Frequency Filtering

© National Instruments Corporation 14-7 ComponentWorks IMAQ Vision

Frequency Filters
This section describes the frequency filters in detail and includes
information on lowpass and highpass attenuation and truncation.

Lowpass Frequency Filters
A lowpass frequency filter attenuates or removes high frequencies present
in the FFT plane. This filter suppresses information related to rapid
variations of light intensities in the spatial image. In this case, the Inverse
FFT command produces an image in which noise, details, texture, and
sharp edges are smoothed.

A lowpass frequency filter removes or attenuates spatial frequencies
located outside a frequency range centered on the fundamental (or null)
frequency.

Lowpass Attenuation
Lowpass attenuation applies a linear attenuation to the full frequency
range, decreasing from f0 to fmax. This is done by multiplying each
frequency by a coefficient C which is a function of its deviation from
the fundamental and maximum frequencies.

,

where C(f0) = 1 and C(fmax) = 0.

C f()
fmax f–

fmax f0–
-------------------=

Chapter 14 Frequency Filtering

ComponentWorks IMAQ Vision 14-8 © National Instruments Corporation

Lowpass Truncation
Lowpass truncation removes a frequency f if it falls outside the truncation
range [f0, fc]. This is done by multiplying each frequency f by a coefficient
C equal to 0 or 1, depending on whether the frequency f is greater than the
truncation frequency fc.

If f > fc,

then C(f) = 0

else C(f) = 1.

The following series of graphics illustrates the behavior of each type of
filter. They give the 3D-view profile of the magnitude of the FFT. This
example uses the following original FFT.

Chapter 14 Frequency Filtering

© National Instruments Corporation 14-9 ComponentWorks IMAQ Vision

After lowpass attenuation, the magnitude of the central peak has been
attenuated, and variations at the edges almost have disappeared.

After lowpass truncation with fc = f0 + 20%(fmax – f0), spatial frequencies
outside the truncation range [f0, fc] are removed. The part of the central
peak that remains is identical to the one in the original FFT plane.

Highpass Frequency Filters
A highpass frequency filter attenuates or removes low frequencies present
in the FFT plane. It has the effect of suppressing information related to slow
variations of light intensities in the spatial image. In this case, the inverse
FFT produces an image in which overall patterns are attenuated and details
are emphasized.

A highpass frequency filter removes or attenuates spatial frequencies
located inside a frequency range centered on the fundamental (or null)
frequency.

Chapter 14 Frequency Filtering

ComponentWorks IMAQ Vision 14-10 © National Instruments Corporation

Highpass Attenuation
Highpass attenuation applies a linear attenuation to the full frequency
range, decreasing from fmax to f0. This is done by multiplying each
frequency by a coefficient C which is a function of its deviation from
the fundamental and maximum frequencies.

,

where C(f0) = 1 and C(fmax) = 0.

Highpass Truncation
Highpass truncation removes a frequency f if it falls inside the truncation
range [f0, fc]. This is done by multiplying each frequency f by a coefficient
C equal to 1 or 0, depending on whether the frequency f is greater than the
truncation frequency fc.

If f < fc,

then C(f) = 0

else C(f) = 1.

C f()
f f0–

fmax f0–
-------------------=

Chapter 14 Frequency Filtering

© National Instruments Corporation 14-11 ComponentWorks IMAQ Vision

The following series of graphics illustrates the behavior of each type of
filter. They give the 3D-view profile of the magnitude of the FFT. This
example uses the following original FFT image.

After highpass attenuation, the central peak has been removed and
variations present at the edges remain.

Chapter 14 Frequency Filtering

ComponentWorks IMAQ Vision 14-12 © National Instruments Corporation

After highpass truncation with fc = f0 + 20%(fmax – f0), spatial frequencies
inside the truncation range [f0, fc] are set to 0. The remaining frequencies
are identical to the ones in the original
FFT plane.

© National Instruments Corporation 15-1 ComponentWorks IMAQ Vision

15
Morphology Analysis

This chapter provides an overview of morphology image analysis.

Morphological transformations extract and alter the structure of objects
in an image. You can use these transformations to prepare objects for
quantitative analysis, observe the geometry of regions, extract the simplest
forms for modeling and identification purposes, and so forth.

The morphological transformations can be used for expanding or reducing
objects, filling holes, closing inclusions, smoothing borders, removing
dendrites, and more. They can be divided into two categories:

• Gray-level morphology functions, which apply to gray-level images

• Binary Morphology functions, which apply to binary images

A binary image is an image that has been segmented into an object region
(pixels equal to 1) and a background region (pixels equal to 0). Such an
image is generated by the thresholding process.

Thresholding
Thresholding consists of segmenting an image into two regions: an object
region and a background region. This is performed by setting to 1 all pixels
that belong to a gray-level interval, called the threshold interval. All other
pixels in the image are set to 0.

You can use this operation to extract areas that correspond to significant
structures in an image and to focus the analysis on these areas.

Chapter 15 Morphology Analysis

ComponentWorks IMAQ Vision 15-2 © National Instruments Corporation

Pixels outside the threshold interval are set to 0 and considered as part of
the background area. Pixels inside the threshold interval are set to 1 and
considered as part of an object area.

Example
This example uses the following source image.

Highlighting the pixels that belong to the threshold interval [166, 255]
(the brightest areas) produces the following image.

A critical and frequent problem in segmenting an image into an object and a
background region occurs when the boundaries are not sharply demarcated.
In such a case, the choice of a correct threshold becomes subjective.
Therefore, it is highly recommended that images be enhanced prior to
thresholding, so as to outline where the correct borders lie. Observing
the intensity profile of a line crossing a boundary area can also be helpful
in selecting a correct threshold value. Finally, keep in mind that
morphological transformations can help you retouch the shape of binary
objects and therefore correct unsatisfactory selections that occurred during
the thresholding.

Chapter 15 Morphology Analysis

© National Instruments Corporation 15-3 ComponentWorks IMAQ Vision

Thresholding a Color Image
To threshold a color image, three threshold intervals need to be specified,
one for each color component. The final binary image is the intersection of
the three binary images obtained by thresholding each color component
separately.

Automatic Threshold
A number of different automatic thresholding techniques are available,
including clustering, entropy, metric, moments, and interclass variance. In
contrast to manual thresholding, these methods do not require that the user
set the minimal and maximal light intensities. These techniques are well
suited for conditions in which the light intensity varies.

Depending on your source image, it is sometimes useful to invert (reverse)
the original gray scale image before applying an automatic threshold
function (for example, moments and entropy). This is especially true for
cases in which the region you want to threshold is black and the background
you want to eliminate is red (when viewing with a binary palette).

Clustering is the only multi-class thresholding method available. Clustering
operates on multiple classes so you can create tertiary or even higher level
images. The other four methods (entropy, metric, moments, and interclass
variance) are reserved for strictly binary thresholding techniques. The
choice of which algorithm to apply depends on the type of image to
threshold.

Clustering
In this rapid technique, the image is randomly sorted within a discrete
number of classes corresponding to the number of phases perceived in an
image. The gray values are determined and a barycenter is determined for
each class. This process is repeated until a value is obtained that represents
the center of mass for each phase or class.

Example
The automatic thresholding method most frequently used is clustering, also
known as multi-class thresholding.

This example uses a clustering technique in two and three phases on an
image. Note that the results from this function are generally independent of
the lighting conditions as well as the histogram values from the image.

Chapter 15 Morphology Analysis

ComponentWorks IMAQ Vision 15-4 © National Instruments Corporation

This example uses the following original image.

Clustering in two phases produces the following image.

Chapter 15 Morphology Analysis

© National Instruments Corporation 15-5 ComponentWorks IMAQ Vision

Clustering in three phases produces the following image.

Entropy
Based on a classical image analysis technique, this method is best suited for
detecting objects that are present in minuscule proportions on the image.
For example, this function would be suitable for default detection.

Metric
Use this technique in situations similar to interclass variance. For each
threshold, a value is calculated that is determined by the surfaces
representing the initial gray scale. The optimal threshold corresponds to
the smallest value.

Moments
This technique is suited for images that have poor contrast (an overexposed
image is better processed than an underexposed image). The moments
method is based on the hypothesis that the observed image is a blurred
version of the theoretically binary original. The blurring that is produced
from the acquisition process (electronic noise or slight defocalization) is
treated as if the statistical moments (average and variance) were the same
for both the blurred image and the original image. This function
recalculates a theoretical binary image.

Chapter 15 Morphology Analysis

ComponentWorks IMAQ Vision 15-6 © National Instruments Corporation

Interclass Variance
Interclass variance is a classical statistic technique used in discriminating
factorial analysis. This method is well-suited for images in which classes
are not too disproportionate. For satisfactory results, the smallest class must
be at least five percent of the largest one. Note that this method has the
tendency to underestimate the class of the smallest standard deviation if the
two classes have a significant variation.

Structuring Element
A structuring element is a binary mask used by most morphological
transformations. You can use a structuring element to weigh the effect
of these functions on the shape and the boundary of objects.

A morphological transformation using a structuring element alters a pixel
P0 so that it becomes a function of its neighboring pixels. These
neighboring pixels are masked by 1 when the structuring element is
centered on P0. A neighbor masked by 0 simply is discarded by the
function.

The structuring element is a binary mask (composed of 1 and 0 values). It
is used to determine which neighbors of a pixel contribute to its new value.
A structuring element can be defined in the case of a rectangular or
hexagonal pixel frame, as shown in the following examples.

The following graphic illustrates a morphological transformation using a
structuring element. This example uses a 3 × 3 image which has a
rectangular frame.

Chapter 15 Morphology Analysis

© National Instruments Corporation 15-7 ComponentWorks IMAQ Vision

Figure 15-1. Rectangular Frame, Neighborhood 3 × 3

The next graphic illustrates a morphological transformation using a
structuring element for an image that has a hexagonal frame. This example
uses a 5 × 3 image.

Figure 15-2. Hexagonal Frame, Neighborhood 5 × 3

The default configuration of the structuring element is a 3 × 3 matrix with
each coefficient set to 1:

Primary Binary Morphology Functions
The primary morphology functions apply to binary images in which
objects have been set to 1 and the background is equal to 0. They include
three fundamental binary processing functions: erosion, dilation, and
hit-miss. The other transformations derive from combinations of these
three functions.

The primary morphology transformations are described in detail in this
section of the manual. They include: erosion, dilation, opening, closing,
inner gradient, outer gradient, hit-miss, thinning, thickening,
proper-opening, proper-closing, and auto-median.

Note In the following descriptions, the term pixel denotes a pixel equal to 1 and the term
object denotes a group of pixels equal to 1.

1 1 1
1 1 1
1 1 1

→ p'0 = T(p0, p2, p4, p5, p7)

→ p'0 = T(p0, p2, p4, p6)

Chapter 15 Morphology Analysis

ComponentWorks IMAQ Vision 15-8 © National Instruments Corporation

Erosion Function
An erosion eliminates pixels isolated in the background and erodes the
contour of objects with respect to the template defined by the structuring
element.

Concept and Mathematics
For a given pixel P0, the structuring element is centered on P0. The pixels
masked by a coefficient of the structuring element equal to 1 are then
referred as Pi. In the example of a structuring element 3 × 3, the Pi can range
from P0 itself to P8.

1. If the value of one pixel Pi is equal to 0, then P0 is set to 0, else P0 is
set to 1.

2. If AND(Pi) = 1, then P0 = 1, else P0 = 0.

Dilation Function
A dilation has the reverse effect of an erosion because dilating objects is
equivalent to eroding the background. This function eliminates tiny holes
isolated in objects and expands the contour of the objects with respect to
the template defined by the structuring element.

Concept and Mathematics
For a given pixel P0, the structuring element is centered on P0. The pixels
masked by a coefficient of the structuring element equal to 1 then are
referred to as Pi. In the example of a structuring element 3 × 3, the Pi can
range from P0 itself to P8.

1. If the value of one pixel Pi is equal to 1, then P0 is set to 1, else P0 is
set to 0.

2. If OR(Pi) = 1, then P0 = 1, else P0 = 0.

Chapter 15 Morphology Analysis

© National Instruments Corporation 15-9 ComponentWorks IMAQ Vision

Erosion and Dilation Examples
This example uses the following binary source image.

The erosion function produces the following image.

The dilation function produces the following image.

The next example uses the following source image. Gray cells indicate
pixels equal to 1.

Chapter 15 Morphology Analysis

ComponentWorks IMAQ Vision 15-10 © National Instruments Corporation

The following tables show how the structuring element can be used to
control the effect of an erosion or a dilation. The larger the structuring
element, the more templates can be edited and the more selective the effect.

Opening Function
The opening function is an erosion followed by a dilation. This function
removes small objects and smoothes boundaries. If I is an image,

opening(I) = dilation(erosion(I)).

Structuring
Element After Erosion Description

A pixel is cleared if it is equal to 1
and does not have its three
upper-left neighbors equal to 1. The
erosion truncates the upper-left
borders of the objects.

A pixel is cleared if it is equal to
1 and does not have its lower and
right neighbors equal to 1. The
erosion truncates the bottom and
right borders of the objects, but
retains the corners.

Structuring
Element After Dilation Description

A pixel is set to 1 if it is equal to
1 or if it has one of its three
upper-left neighbors equal to 1.
The dilation expands the
lower-right borders of the objects.

A pixel is set to 1 if it is equal to
1 or if it has its lower or right
neighbor equal to 1. The dilation
expands the upper and left borders
of the objects.

Chapter 15 Morphology Analysis

© National Instruments Corporation 15-11 ComponentWorks IMAQ Vision

This operation does not alter the area significantly and shape of objects
because erosion and dilation are dual transformations. Borders removed by
the erosion are restored by the dilation. However, small objects that vanish
during the erosion do not reappear after the dilation.

Closing Function
The closing function is a dilation followed by an erosion. It fills tiny holes
and smoothes boundaries. If I is an image,

closing(I) = erosion(dilation(I)).

This operation does not alter significantly the area and shape of objects
because dilation and erosion are morphological complements. Borders
expanded by the dilation function are reduced by the erosion function.
However, tiny holes filled during the dilation do not reappear after the
erosion.

Opening and Closing Examples
The following series of graphics illustrate examples of openings and
closings.

1 1 1
1 1 1
1 1 1

Original Image Structuring Element After Opening After Closing

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

0 0 1 0 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0

Structuring Element After Opening Structuring Element After Closing

Chapter 15 Morphology Analysis

ComponentWorks IMAQ Vision 15-12 © National Instruments Corporation

External Edge Function
The external edge subtracts the source image from the dilated image of the
source image. The remaining pixels correspond to the pixels added by the
dilation. If I is an image,

external edge(I) = dilation(I) – I = XOR(I, dilation(I)).

Internal Edge Function
The internal edge subtracts the eroded image from its source image. The
remaining pixels correspond to the pixels eliminated by the erosion. If I is
an image,

internal edge(I) = I – erosion(I) = XOR(I, dilation(I)).

External and Internal Edge Example
This example uses the following binary source image.

Extraction using a 5 × 5 structuring element produces the following image.
The superimposition of the internal edge is in white and the external edge
is in gray.

The thickness of the extracted contours depends on the size of the
structuring element.

Chapter 15 Morphology Analysis

© National Instruments Corporation 15-13 ComponentWorks IMAQ Vision

Hit-Miss Function
You can use the hit-miss function to locate particular configurations of
pixels. It extracts each pixel of an image that is placed in a neighborhood
matching exactly the template defined by the structuring element.
Depending on the configuration of the structuring element, the hit-miss
function can be used to locate single isolated pixels, cross-shape or
longitudinal patterns, right angles along the edges of objects, and other
user-specified shapes. The larger the size of the structuring element, the
more specific the researched template can be.

Concept and Mathematics
For a given pixel P0, the structuring element is centered on P0. The pixels
masked by the structuring element are then referred as Pi. In the example
of a structuring element 3 × 3, the Pi range from P0 to P8.

If the value of each pixel Pi is equal to the coefficient of the structuring
element placed on top of it, then the pixel P0 is set to 1, else the pixel P0 is
set to 0.

In other words, if the pixels Pi define the exact same template as the
structuring element, then P0 is set to 1, else P0 is set to 0.

A hit-miss function using a structuring element with a central coefficient
equal to 0 changes all pixels set to 1 in the source image to the value 0.

Example 1
This example uses the following source image.

Chapter 15 Morphology Analysis

ComponentWorks IMAQ Vision 15-14 © National Instruments Corporation

The following series of graphics shows the results of three hit-miss
functions applied to the same source image. Each hit-miss function uses a
different structuring element (specified above each transformed image).
Gray cells indicate pixels equal to 1.

Example 2
This example uses the following binary source image. Given this binary
image, the hit-miss function can be used to locate pixels surrounded by
various patterns specified via the structuring element.

Chapter 15 Morphology Analysis

© National Instruments Corporation 15-15 ComponentWorks IMAQ Vision

Thinning Function
The thinning function eliminates pixels that are located in a neighborhood
that matches a template specified by the structuring element. Depending on
the configuration of the structuring element, thinning can be used to
remove single pixels isolated in the background and right angles along the
edges of objects. The larger the size of the structuring element, the more
specific the template can be.

The thinning function extracts the intersection between a source image
and its transformed image after a hit-miss function. In binary terms, the
operation subtracts its hit-miss transformation from a source image. If I is
an image,

thinning(I) = I – hit-miss(I) = XOR (I, hit-miss(I)).

Use the hit-miss function to locate
pixels isolated in a background.

The structuring element presented on
the right extracts all pixels equal to 1
that are surrounded by at least two
layers of pixels equal to 0.

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

Use the hit-miss function to locate
single pixel holes in objects.

The structuring element presented on
the right extracts all pixels equal to 0
that are surrounded by at least one
layer of pixels equal to 1.

1 1 1
1 0 1
1 1 1

Use the hit-miss function to locate
pixels along a vertical left edge.

The structuring element presented on
the right extracts pixels surrounded by
at least one layer of pixels equal to 1 to
the left and pixels equal to 0 to the
right.

1 1 0
1 1 0
1 1 0

Chapter 15 Morphology Analysis

ComponentWorks IMAQ Vision 15-16 © National Instruments Corporation

This operation is useless when the central coefficient of the structuring
element is equal to 0. In such cases, the hit-miss function can only change
the value of certain pixels in the background from 0 to 1. The subtraction
of the thinning function then resets these pixels back to 0 anyway.

Examples
This example uses the following binary source image.

This example uses the thinning function and the following structuring
element:

0 0 0
0 1 0
0 0 0

Thinning produces the following image. Single pixels in the background of
this image have been removed.

The next example uses the following source image.

Chapter 15 Morphology Analysis

© National Instruments Corporation 15-17 ComponentWorks IMAQ Vision

The following series of graphics shows the results of three thinnings
applied to the source image. Each thinning uses a different structuring
element (specified above each transformed image). Gray cells indicate
pixels equal to 1.

Thickening Function
The thickening function adds to an image those pixels located in a
neighborhood that matches a template specified by the structuring element.
Depending on the configuration of the structuring element, thickening can
be used to fill holes, smooth right angles along the edges of objects, and so
forth. The larger the size of the structuring element, the more specific the
template can be.

The thickening function extracts the union between a source image and
its transformed image after a hit-miss function that uses the structuring
element specified for the thickening. In binary terms, the operation adds a
hit-miss transformation to a source image. If I is an image,

thickening(I) = I + hit-miss(I) = OR (I, hit-miss(I)).

This operation is useless when the central coefficient of the structuring
element is equal to 1. In such case, the hit-miss function only can turn
certain pixels of the objects from 1 to 0. The addition of the thickening
function resets these pixels to 1 anyway.

Chapter 15 Morphology Analysis

ComponentWorks IMAQ Vision 15-18 © National Instruments Corporation

Examples
This example uses the following binary source image.

Thickening using the structuring element

1 1 1
1 0 1
1 1 1

produces the following image. Single pixel holes are filled.

The next example uses the following source image.

Chapter 15 Morphology Analysis

© National Instruments Corporation 15-19 ComponentWorks IMAQ Vision

The following series of graphics shows the results of three thickenings
applied to the source image. Each thickening uses a different structuring
element (specified on top of each transformed image). Gray cells indicate
pixels equal to 1.

Proper-Opening Function
The proper-opening function is a finite and dual combination of openings
and closings. It removes small particles and smoothes the contour of
objects with respect to the template defined by the structuring element.

If I is the source image, the proper-opening extracts the intersection
between the source image I and its transformed image obtained after an
opening, followed by a closing, and followed by another opening.

proper-opening(I) = AND(I, OCO(I)), or
 proper-opening(I) = AND(I, DEEDDE(I)),

where I is the source image,

E is an erosion,

D is a dilation,

O is an opening,

C is a closing,

F(I) is the image obtained after applying the function F to the
image I, and

GF(I) is the image obtained after applying the function F to the
image I followed by the function G to the image I.

Chapter 15 Morphology Analysis

ComponentWorks IMAQ Vision 15-20 © National Instruments Corporation

Proper-Closing Function
The proper-closing function is a finite and dual combination of closings
and openings. It fills tiny holes and smoothes the inner contour of objects
with respect to the template defined by the structuring element.

If I is the source image, the proper-closing extracts the union of the source
image I and its transformed image obtained after a closing, followed by an
opening, and followed by another closing.

proper-closing(I) = OR(I, COC(I)), or
 proper-closing(I) = OR(I, EDDEED(I)),

where I is the source image,

E is an erosion,

D is a dilation,

O is an opening,

C is a closing,

F(I) is the image obtained after applying the function F to the
image I, and

GF(I) is the image obtained after applying the function F to the
image I followed by the function G to the image I.

Auto-Median Function
The auto-median function uses dual combinations of openings and
closings. It generates simpler objects that have fewer details.

If I is the source image, the auto-median function extracts the intersection
between the proper-opening and proper-closing of the source image I.

auto-median(I) = AND(OCO(I), COC(I)), or
 auto-median(I) = AND(DEEDDE(I), EDDEED(I)),

where I is the source image,

E is an erosion,

D is a dilation,

O is an opening,

Chapter 15 Morphology Analysis

© National Instruments Corporation 15-21 ComponentWorks IMAQ Vision

C is a closing,

F(I) is the image obtained after applying the function F to the
image I, and

GF(I) is the image obtained after applying the function F to the
image I followed by the function G to the image I.

Advanced Binary Morphology Functions
The advanced morphology functions are conditional combinations of
fundamental transformations such as the binary erosion and dilation. They
apply to binary images in which a threshold of 1 has been applied to objects
and the background is equal to 0. The advanced binary morphology
functions include the border, hole filling, labeling, lowpass filters, highpass
filters, separation, skeleton, segmentation, distance, Danielsson, circle, and
convex functions.

Note In this section of the manual, the term pixel denotes a pixel equal to 1 and the term
object denotes a group of pixels equal to 1.

Border Function
The border function removes objects that touch the border of the image.
These objects may have been truncated during the digitization of the image,
and their elimination might be useful to avoid erroneous particle
measurements and statistics.

Hole Filling Function
The hole filling function fills the holes within objects.

Labeling Function
The labeling function assigns a different gray-level value to each object.
The image produced is not a binary image, but a labeled image using a
number of gray-level values equal to the number of objects in the image
plus the gray level 0 used in the background area.

The labeling function can identify objects using connectivity-4 or
connectivity-8 criteria.

Chapter 15 Morphology Analysis

ComponentWorks IMAQ Vision 15-22 © National Instruments Corporation

Lowpass Filters
The lowpass filter removes small objects with respect to their width
(specified by a parameter called filter size).

For a given filter size N, the lowpass filter eliminates objects with a width
less than or equal to (N – 1) pixels. These objects are those that would
disappear after (N – 1)/2 erosions.

Highpass Filters
The highpass filter removes large objects with respect to their width
(specified by a parameter called filter size).

For a given filter size N, the highpass filter eliminates objects with a width
greater than or equal to N pixels. These objects are those which would not
disappear after (N/2 + 1) erosions.

Both the highpass and lowpass morphological filters use erosions to
determine if an object is to be removed. Therefore, they cannot discriminate
objects with a width of 2k pixels from objects with a width of 2k – 1 pixels.
For example, one erosion eliminates both objects that are 2-pixels and
1-pixel wide.

Connectivity-4 Connectivity-8

Definition

Two pixels are considered as part of
the same object if they are
horizontally or vertically adjacent.

The pixels are considered
as part of two different
objects if they are
diagonally adjacent.

The pixels are considered as
part of the same object if
they are horizontally,
vertically, or diagonally
adjacent.

Illustration

For a same pixel pattern, different sets
of objects can be identified.

Example

Chapter 15 Morphology Analysis

© National Instruments Corporation 15-23 ComponentWorks IMAQ Vision

The precision of the filters then depends on the parity of the filter sizeN.

Lowpass and Highpass Example
This example uses the following binary source image.

For a given filter size, a highpass filter produces the following image. Gray
objects and white objects are filtered out by a lowpass and highpass filter,
respectively.

Highpass Filter Lowpass Filter

If N is an even
number (N = 2k)

• removes objects with a width
greater than or equal to 2k

• uses k – 1 erosions

• removes objects with a width less
than or equal to 2k – 2

• uses k – 1 erosions

If N is an odd number
(N = 2k + 1)

• removes objects with a width
greater than or equal to 2k + 1

• uses k erosions

• removes objects with a width less
than or equal to 2k

• uses k erosions

Chapter 15 Morphology Analysis

ComponentWorks IMAQ Vision 15-24 © National Instruments Corporation

Separation Function
The separation function breaks narrow isthmuses and separates objects
that touch each other with respect to an user-specified filter size.

For example, after thresholding an image, two gray-level objects
overlapping one another might appear as a single binary object. A
narrowing can be observed where the original objects intersected each
other. If the narrowing has a width of M pixels, a separation using a filter
size of (M + 1) breaks it and restore the two original objects. This applies
at the same time to all objects that contain a narrowing shorter than N
pixels.

For a given filter size N, the separation function segments objects having a
narrowing shorter than or equal to (N – 1) pixels. These objects are those
that are divided into two parts after (N – 1)/2 erosions.

This operation uses erosions, labeling, and conditional dilations.

The above definition is true when N is an odd number. It needs to be
modified slightly when N is an even number. This modification is due to the
use of erosions to determine if a narrowing has to be broken or kept. The
function cannot discriminate a narrowing with a width of 2k pixels from a
narrowing with a width of (2k – 1) pixels. For example, one erosion breaks
both a narrowing that is two pixels wide and a narrowing that is one pixel
wide.

The precision of the separation is then limited to the elimination of
constrictions having a width lesser than an even number of pixels:

• If N is an even number (2k), the separation breaks a narrowing with a
width smaller than or equal to (2k – 2) pixels. It uses (k – 1) erosions.

• If N is an odd number (2k + 1), the separation breaks a narrowing with
a width smaller than or equal to 2k. It uses k erosions.

Skeleton Functions
A skeleton function applies a succession of thinnings until the width of
each object becomes equal to one pixel. The skeleton functions are both
time- and memory-consuming. They are based on conditional applications
of thinnings and openings using various configurations of structuring
elements.

Chapter 15 Morphology Analysis

© National Instruments Corporation 15-25 ComponentWorks IMAQ Vision

L-Skeleton Function
The L-skeleton function indicates the L-shaped structuring element
skeleton function. For example, notice the following original image.

The L-skeleton function produces the following rectangle pixel frame
image.

M-Skeleton Function
The M-skeleton (M-shaped structuring element) function extracts a
skeleton with more dendrites or branches. Using the same original image
as in the previous example, the M-skeleton function produces the following
image.

Chapter 15 Morphology Analysis

ComponentWorks IMAQ Vision 15-26 © National Instruments Corporation

Skiz Function
The skiz (skeleton of influence zones) function behaves like an L-skeleton
applied to the background regions, instead of the object regions. It produces
median lines that are at an equal distance from the objects.

Using the same source image as in the previous example, the skiz function
produces the following image (shown after superimposition on top of the
source image).

Segmentation Function
The segmentation function is only applied to labeled images. It partitions
an image into segments, each centered on an object, such that they do not
overlap each other or leave empty zones. This result is obtained by dilating
objects until they touch one another.

Note The segmentation function is time-consuming. It is recommended that you reduce
the image to its minimum significant size before selecting this function.

In the following image, binary objects (shown in black) are superimposed
on top of the segments (shown in gray shades).

Chapter 15 Morphology Analysis

© National Instruments Corporation 15-27 ComponentWorks IMAQ Vision

When applied to an image with binary objects, the transformed image turns
entirely red because it is entirely composed of pixels set to 1.

Comparisons Between Segmentation and
Skiz Functions
The segmentation function extracts segments that each contain one
object and represent the area in which this object can be moved without
intercepting another object (assuming that all objects move at the same
speed).

The edges of these segments give a representation of the external skeletons
of the objects. As opposed to the skiz function, segmentation does not
involve median distances.

Segments are obtained by successive dilations of objects until they touch
each other and cover the entire image. The final image contains as many
segments as there were objects in the original image. On the other hand, if
you consider the inside of closed skiz lines as segments, you might produce
more segments than objects originally present in the image. Notice the
upper-right region in the following example.

The following image shows:

• Original objects in black

• Segments in dotted patterns

• Skiz lines

Distance Function
The distance function assigns to each pixel a gray-level value equal to the
shortest distance to the border of the object. That distance may be equal to
the distance to the outer border of the object or to a hole within the object.

Chapter 15 Morphology Analysis

ComponentWorks IMAQ Vision 15-28 © National Instruments Corporation

Danielsson Function
The Danielsson function also creates a distance map, but is a more
accurate algorithm than the classical distance function. Use the Danielsson
function instead of the distance function when possible.

Example
This example uses the following source threshold image.

The image is sequentially processed with a lowpass filter, hole filling, and
the Danielsson function. The Danielsson function produces the following
distance map image.

It is useful to view this final image with a binary palette. In this case, each
level corresponds to a different color. The user easily can determine the
relation of a set of pixels to the border of an object. The first layer (the layer

Chapter 15 Morphology Analysis

© National Instruments Corporation 15-29 ComponentWorks IMAQ Vision

that forms the border) is colored red. The second layer (the layer closest to
the border) is green, the third layer is blue, and so forth.

Circle Function
The circle function enables the user to separate overlapping circular
objects. The circle function uses the Danielsson coefficient to reconstitute
the form of an object, provided that the objects are essentially circular. The
objects are treated as a set of overlapping discs that is then separated into
separate discs. Therefore, it is possible to trace circles corresponding to
each object.

Example
This example uses the following source image.

The circle function produces the following processed image.

Chapter 15 Morphology Analysis

ComponentWorks IMAQ Vision 15-30 © National Instruments Corporation

Convex Function
The convex function is useful for closing particles so that measurements
can be made on the particle, even though the contour of the object is
discontinuous. This command is usually needed in cases in which the
sample object is cut because of the acquisition process.

The convex function calculates a convex envelope around the perimeter of
each object, effectively closing the object. The image to be treated must be
both binary and labeled.

Example
This example uses the following original binary labeled image.

The convex function produces the following image.

Chapter 15 Morphology Analysis

© National Instruments Corporation 15-31 ComponentWorks IMAQ Vision

Gray-Level Morphology
The gray-level morphology functions apply to gray-level images. You can
use these functions to alter the shape of regions by expanding bright areas
at the expense of dark areas and vice-versa. These functions smooth
gradually varying patterns and increase the contrast in boundary areas. The
gray-level morphology functions include the erosion, dilation, opening,
closing, proper-opening, proper-closing, and auto-median functions. These
functions derive from the combination of gray-level erosions and dilations
that use the structuring element.

Erosion Function
A gray-level erosion reduces the brightness of pixels that are surrounded
by neighbors with a lower intensity. The concept of neighborhood is
determined by the template of the structuring element.

Concept and Mathematics
Each pixel P0 in an image becomes equal to the minimum value of its
neighbors. For a given pixel P0, the structuring element is centered on P0.
The pixels masked by a coefficient of the structuring element equal to 1 are
then referred as Pi. In the example of a 3 × 3 structuring element, Pi can
range from P0 to P8.

P0 = min(Pi).

Note A gray-level erosion using a structuring element f × f with all its coefficients set to
1 is equivalent to an Nth order filter with a filter size f × f and the value N equal
to 0 (refer to the nonlinear spatial filters).

Dilation Function
The gray-level dilation has the same effect as the gray-level erosion,
because dilating bright regions is equivalent to eroding dark regions. This
function increases the brightness of each pixel that is surrounded by
neighbors with a higher intensity. The concept of neighborhood is
determined by the structuring element.

Concept and Mathematics
Each pixel P0 in an image becomes equal to the maximum value of its
neighbors. For a given pixel P0, the structuring element is centered on P0.
The pixels masked by a coefficient of the structuring element equal to 1 are

Chapter 15 Morphology Analysis

ComponentWorks IMAQ Vision 15-32 © National Instruments Corporation

then referred as Pi. In the example of a structuring element 3 × 3, Pi can
range from P0 to P8.

P0 = max(Pi).

Note A gray-level dilation using a structuring element f × f with all its coefficients set
to 1 is equivalent to an Nth order filter with a filter size f × f and the value N equal
to f × f – 1 (refer to the nonlinear spatial filters).

Erosion and Dilation Examples
This example uses the following source image.

The following table provides example structuring elements, and the
corresponding eroded and dilated images.

Structuring Element Erosion Dilation

1 1 1
1 1 1
1 1 1

0 1 0
1 1 1
0 1 0

Chapter 15 Morphology Analysis

© National Instruments Corporation 15-33 ComponentWorks IMAQ Vision

Opening Function
The gray-level opening function consists of a gray-level erosion followed
by a gray-level dilation. It removes bright spots isolated in dark regions and
smoothes boundaries. The effects of the function are moderated by the
configuration of the structuring element.

opening(I) = dilation(erosion (I)).

This operation does not alter significantly the area and shape of objects
because erosion and dilation are morphological opposites. Bright borders
reduced by the erosion are restored by the dilation. However, small bright
objects that vanish during the erosion do not reappear after the dilation.

Closing Function
The gray-level closing function consists of a gray-level dilation followed
by a gray-level erosion. It removes dark spots isolated in bright regions and
smoothes boundaries. The effects of the function are moderated by the
configuration of the structuring element.

closing(I) = erosion(dilation (I)).

This operation does not alter significantly the area and shape of objects
because dilation and erosion are morphological opposites. Bright borders
expanded by the dilation are reduced by the erosion. However, small dark
objects that vanish during the dilation do not reappear after the erosion.

Opening and Closing Examples
This example uses the following source image.

Chapter 15 Morphology Analysis

ComponentWorks IMAQ Vision 15-34 © National Instruments Corporation

The opening function produces the following image.

Consecutive applications of an opening or closing command always give
the same results. A closing function produces the following image.

Proper-Opening Function
The gray-level proper-opening is a finite and dual combination of
openings and closings. It removes bright pixels isolated in dark regions and
smoothes the boundaries of bright regions. The effects of the function are
moderated by the configuration of the structuring element.

If I is the source image, the proper-opening extracts the minimum value of
each pixel between the source image I and its transformed image obtained
after an opening, followed by a closing, and followed by another opening.

proper-opening(I) = min(I, OCO (I)), or
proper-opening(I) = min(I, DEEDDE(I)),

Chapter 15 Morphology Analysis

© National Instruments Corporation 15-35 ComponentWorks IMAQ Vision

where I is the source image,

E is an erosion,

D is a dilation,

O is an opening,

C is a closing,

F(I) is the image obtained after applying the function F to the
imageI, and

GF(I) is the image obtained after applying the function F to the
imageI followed by the function G to the image I.

Proper-Closing Function
The proper-closing is a finite and dual combination of closings and
openings. It removes dark pixels isolated in bright regions and smoothes
the boundaries of dark regions. The effects of the function are moderated
by the configuration of the structuring element.

If I is the source image, the proper-closing extracts the maximum value of
each pixel between the source image I and its transformed image obtained
after a closing, followed by an opening, and followed by another closing.

proper-closing(I) = max(I, COC(I)), or
proper-closing(I) = max(I, EDDEED(I)),

where I is the source image,

E is an erosion,

D is a dilation,

O is an opening,

C is a closing,

F(I) is the image obtained after applying the function F to the
image I, and

GF(I) is the image obtained after applying the function F to the
image I followed by the function G to the image I.

Chapter 15 Morphology Analysis

ComponentWorks IMAQ Vision 15-36 © National Instruments Corporation

Auto-Median Function
The auto-median function uses dual combinations of openings and
closings. It generates simpler objects that have fewer details.

If I is the source image, the auto-median extracts the minimum value of
each pixel between the two images obtained by applying a proper-opening
and a proper-closing of the source image I.

auto-median(I) = min(OCO(I), COC(I)), or
auto-median(I) = min(DEEDDE(I), EDDEED(I)),

where I is the source image,

E is an erosion,

D is a dilation,

O is an opening,

C is a closing,

F(I) is the image obtained after applying the function F to the
image I, and

GF(I) is the image obtained after applying the function F to the
image I followed by the function G to the image I.

© National Instruments Corporation 16-1 ComponentWorks IMAQ Vision

16
Quantitative Analysis

This chapter provides an overview of quantitative image analysis. The
quantitative analysis of an image consists of obtaining densitometry
and object measurements. Before starting this analysis, it is necessary to
calibrate the image spatial dimensions and intensity scale to obtain
measurements expressed in real units.

Spatial Calibration
Spatial calibration consists of correlating the area of a pixel with physical
dimensions. The latter can be defined by three parameters:

X Step, Y Step, and Unit .

X Step and Y Step are the horizontal and vertical lengths of a pixel. Unit is
the selected unit of distance.

The area of a pixel is then equal to (X Step × Y Step)Unit 2.

If a pixel represents a square area, then

X Step = Y Step = Sampling Step.

The spatial calibration of an image can be performed using two methods:

• Pixel calibration, or editing the dimensions of a single pixel

• Distance calibration, or editing a the length of a line selected in the
image

Chapter 16 Quantitative Analysis

ComponentWorks IMAQ Vision 16-2 © National Instruments Corporation

Intensity Calibration
Intensity calibration consists of correlating the gray-scale values to
user-defined quantities such as optical densities or concentrations.

The intensity calibration of an image is performed in two steps:

• Selection of sample points in an image and calibration of their
gray-level value

• Selection of a curve-fitting algorithm to calibrate the entire gray scale

The following example uses an 8-bit image, or 256 gray levels.

Definition of a Digital Object
In digital images, objects can be defined by three criteria: intensity
threshold, connectivity, and area threshold.

Intensity Threshold
Objects are characterized by an intensity range. They are composed of
pixels with gray-level values belonging to a given threshold interval
(overall luminosity or gray shade). Then other pixels are considered part
of the background.

The threshold interval is defined by the two parameters [Lower
Threshold, Upper Threshold]. In the case of binary objects the threshold
interval is [1, 1].

Chapter 16 Quantitative Analysis

© National Instruments Corporation 16-3 ComponentWorks IMAQ Vision

Connectivity
Once the pixels belonging to a specified intensity threshold are identified,
they are grouped into objects. This process introduces the notion of
adjacent pixels or connectivity.

In a rectangular pixel frame, each pixel P0 has eight neighbors, as shown in
the following graphic. From a mathematical point of view, the pixels P1, P3,
P5, and P7 are closer to P0 than the pixels P2, P4, P6, and P8.

If D is the distance from P0 to P1, then the distances between P0 and its eight
neighbors can range from D to D, as shown in the following graphic.

Connectivity-8
A pixel belongs to an object if it is at a distance D or D from another
pixel in the object.

Two pixels are considered as part of a same object if they are horizontally,
vertically, or diagonally adjacent. In the following image, the object count
equals 1.

P8 P1 P2

P7 P0 P3

P6 P5 P4

2

2D D 2D

D 0 D

2D D 2D

2

Chapter 16 Quantitative Analysis

ComponentWorks IMAQ Vision 16-4 © National Instruments Corporation

Connectivity-4
A pixel belongs to an object if it is at a distance D from another pixel in the
object.

Two pixels are considered as part of a same object if they are horizontally
or vertically adjacent. They are considered as part of two different objects
if they are diagonally adjacent. In the following image, the object count
equals 4.

Area Threshold
Finally a size criteria can be specified to detect only objects falling in a
given area range.

The area threshold is defined by the two parameters [Minimum Area ,
Maximum Area].

Examples
In the following example, 1 pixel = 1 square inch.

Objects to Detect
Lower

Threshold
Upper

Threshold
Minimum

Area
Maximum

Area

Black objects (gray level 0) as small
as 1 sq-µin.

0 0 1 65536

White objects (gray level 255) bigger
than 500 sq-µin.

255 255 500 65536

Labeled objects placed in a black
background and ranging from 200 to
1000 sq-µin.

1 255 200 1000

Light-gray objects belonging to the
gray-level range [190, 200] and
smaller than 3000 sq-µin.

190 200 1 3000

Chapter 16 Quantitative Analysis

© National Instruments Corporation 16-5 ComponentWorks IMAQ Vision

Note The most straightforward way to isolate objects is to use the threshold function
and convert them to binary objects. This method offers the advantage of clearly
showing the objects while the threshold interval remains constant and equal
to [1, 1].

Object Measurements
A digital object can be characterized by a set of morphological and
intensity parameters described in the Areas, Lengths, Coordinates, Chords
and Axes, Shape Equivalence, Shape Features, Densitometry, and Diverse
Measurements sections.

Areas
This section describes the following area parameters:

• Number of pixels—Area in number of pixels

• Particle area—Area expressed in real units (based on image spatial
calibration)

• Scanned area—Area of the entire image expressed in real units

• Ratio—Ratio of the object area to the entire image area

• Number of holes—Number of holes within the object

• Holes’ area—Total area of the holes

• Total area—Area of the object including its holes’ area (equals
Particle Area + Holes’ Area)

Particle Number
Identification number assigned to an object. Particles are numbered starting
from 1 in increasing order from the upper-left corner of the image to the
lower-right corner.

Number of Pixels
Number of pixels in an object. This value gives the area of an object,
without holes, in pixel units.

Particle Area
Area of an object expressed in real units. This value is equal to Number of
pixels when the spatial calibration is such that one pixel represents one
square unit.

Chapter 16 Quantitative Analysis

ComponentWorks IMAQ Vision 16-6 © National Instruments Corporation

Scanned Area
Area of the entire image expressed in real units. This value is equal to the
product (Resolution X × X-Step)(Resolution Y × Y-Step).

Ratio
The percentage of the image occupied by all objects.

Ratio =

Number of Holes
Number of holes inside an object. The software detects holes inside an
object as small as 1 pixel.

Holes’ Area
Total area of the holes within an object.

Total Area
Area of an object including the area of its holes. This value is equal to
(Particle Area + Holes’ Area).

Note An object located inside a hole of a bigger object is identified as a separate object.
The area of a hole that contains an object includes the area covered by the object.

particle area
scanned area

Chapter 16 Quantitative Analysis

© National Instruments Corporation 16-7 ComponentWorks IMAQ Vision

Lengths
This section describes the following length parameters:

• Particle perimeter—Length of the outer contour.

• Holes’ perimeter—Sum of the perimeters of the holes within the
object

• Width —Distance between the left-most and right-most pixels in the
object

• Height—Distance between the upper-most and lower-most pixels in
the object

Particle Perimeter
Length of the outer contour of an object.

Holes’ Perimeter
Sum of the perimeters of the holes within an object.

Note Holes’ measurements can turn into valuable data when studying constituents A
and B such that B is occluded in A. If the image can be processed so that the B
regions appear as holes in A regions after a threshold, the ratio (Holes’ Area ÷
Particle Total Area) gives the percentage of B in A. Holes’ perimeter gives the
length of the boundary between A and B.

Breadth
Distance between the left-most and right-most pixels in an object, or
max(Xi) – min(Xi). It is also equal to the horizontal side of the smallest
horizontal rectangle containing the object, or the difference maxX – minX.

Object # Particle Area Holes’ Area Total Area

Object 1 A B + C A + B + C

Object 2 D 0 D

Object 3 E F + G E + F + G

Object 4 G 0 G

Chapter 16 Quantitative Analysis

ComponentWorks IMAQ Vision 16-8 © National Instruments Corporation

Height
Distance between the upper-most and lower-most pixels in an object,
or max(Yi) – min(Yi). It is also equal to the vertical side of the smallest
horizontal rectangle containing the object, or the difference maxY – minY.

Coordinates
Coordinates are expressed with respect to an origin (0, 0), located at the
upper-left corner of the image. This section describes the following
coordinate parameters:

• Center of Mass (X, Y)—Coordinates of the center of gravity

• Min X, Min Y —Upper-left corner of the smallest horizontal rectangle
containing the object

• Max X, Max Y—Lower-right corner of the smallest horizontal
rectangle containing the object

• Max chord X and Y—Left-most point along the longest
horizontal chord

Center of Mass X and Center of Mass Y
Coordinates of the center of gravity of an object. The center of gravity of
an object composed of N pixels Pi is defined as the point G such that

 , and

the center of mass .

XG gives the average location of the central points of horizontal segments
in an object.

The center of mass .

YG gives the average location of the central points of horizontal segments in
an object.

OG 1
N
---- OPi

i 1=

i N=

∑=

XG
1
N
---- Xi

i 1=

i N=

∑=

YG
1
N
---- Yi

i 1=

i N=

∑=

Chapter 16 Quantitative Analysis

© National Instruments Corporation 16-9 ComponentWorks IMAQ Vision

Note G can be located outside an object if the latter has a convex shape.

Min(X, Y) and Max(X, Y)
Coordinates of the upper-left and lower-right corners of the smallest
horizontal rectangle containing an object.

The origin (0, 0) has two pixels that have the coordinates (minX, minY) and
(maxX, maxY) such that

minX = min(Xi)

minY = min(Yi)

maxX = max(Xi)

maxY = max(Yi)

where Xi and Yi are the coordinates of the pixels Pi in an object.

Max Chord X and Max Chord Y
Coordinates of the left-most pixel along the longest horizontal chord in an
object.

Chords and Axes
This section describes the following chord and axis parameters:

• Max chord length—Length of the longest horizontal chord

• Mean chord X—Mean length of horizontal segments

• Mean chord Y—Mean length of vertical segments

• Max intercept—Length of the longest segment (in all possible
directions)

Chapter 16 Quantitative Analysis

ComponentWorks IMAQ Vision 16-10 © National Instruments Corporation

• Mean intercept perpendicular—Mean length of the segments
perpendicular to the max intercept

• Particle orientation—Orientation in degree with respect to the
horizontal axis

Max Chord Length
Length of the longest horizontal chord in an object.

Mean Chord X
Mean length of horizontal segments in an object.

Mean Chord Y
Mean length of vertical segments in an object.

Max Intercept
Length of the longest segment in an object (in all possible directions of
projection).

Mean Intercept Perpendicular
Mean length of the segments in an object perpendicular to the max
intercept.

Mean intercept perpendicular =

Particle Orientation
The angle of the longest axis with respect to the horizontal axis. The value
can be between 0° and 180°.

particle area
max intercept

Chapter 16 Quantitative Analysis

© National Instruments Corporation 16-11 ComponentWorks IMAQ Vision

Notice that this value does not give information regarding the symmetry of
the particle.

Therefore, an angle of 190° is considered the same as 10°.

Shape Equivalence
This section describes the following shape-equivalence parameters:

• Equivalent ellipse minor axis—Minor axis of the ellipse that has the
same area as the object and a major axis equal to half its max intercept

• Ellipse major axis—Major axis of the ellipse that has the same area
and same perimeter as the object

• Ellipse minor axis—Minor axis of the ellipse that has the same area
and same perimeter as the object

• Ellipse Ratio—Ratio of the major axis of the equivalent ellipse to its
minor axis

• Rectangle big side—Big side of the rectangle that has the same area
and same perimeter as the object

• Rectangle small side—Small side of the rectangle that has the same
area and same perimeter as the object

• Rectangle ratio—Ratio of the big side of the equivalent rectangle to
its small side

Longest Axis

Particle

Horizontal AxisOrientation
in Degrees

Chapter 16 Quantitative Analysis

ComponentWorks IMAQ Vision 16-12 © National Instruments Corporation

Equivalent Ellipse Minor Axis
The equivalent ellipse minor axis is the minor axis of the ellipse that has
the same area as the object and a major axis equal to half the max intercept
of the object.

This definition gives the following set of equations:

particle area = πab, and
max intercept = 2a.

The equivalent ellipse minor axis is defined as

2b = .

Ellipse Major Axis
The ellipse major axis is the total length of the major axis of the ellipse
that has the same area and same perimeter as an object. This length is equal
to 2a.

This definition gives the following set of equations:

This set of equations can be expressed so that the sum a + b and the product
ab become functions of the parameters Particle Area and Particle
Perimeter. a and b then become the two solutions of the polynomial
equation X 2 – (a + b)X + ab = 0.

Notice that for a given area and perimeter, only one solution (a, b) exists.

4 particle area×
π max intercept×
--

Area πab=

Perimeter π 2 a
2

b
2

+()=

Chapter 16 Quantitative Analysis

© National Instruments Corporation 16-13 ComponentWorks IMAQ Vision

Ellipse Minor Axis
The ellipse minor axis is the total length of the minor axis of the ellipse
that has the same area and same perimeter as an object. This length is equal
to 2b.

Ellipse Ratio
The ellipse ratio is the ratio of the major axis of the equivalent ellipse to
its minor axis.

It is defined as .

The more elongated the equivalent ellipse, the higher the ellipse ratio. The
closer the equivalent ellipse is to a circle, the closer to 1 the ellipse ratio.

Rectangle Big Side
Rectangle big side is the length of the big side (a) of the rectangle that has
the same area and same perimeter as an object.

This definition gives the following set of equations:

This set of equations can be expressed so that the sum a + b and the product
ab become functions of the parameters Particle Area and Particle
Perimeter. a and b then become the two solutions of the polynomial
equation X

2

 – (a + b)X + ab = 0.

Notice that for a given area and perimeter, only one solution (a, b) exists.

Rectangle Small Side
Rectangle small side is the length of the small side of the rectangle that has
the same area and same perimeter as an object. This length is equal to b.

ellipse major axis
ellipse minor axis
-- a

b
---=

Area ab=

Perimeter 2 a b+()=

Chapter 16 Quantitative Analysis

ComponentWorks IMAQ Vision 16-14 © National Instruments Corporation

Rectangle Ratio
Rectangle ratio is the ratio of the big side of the equivalent rectangle to its
small side.

It is defined as .

The more elongated the equivalent rectangle, the higher the Rectangle
ratio .

The closer the equivalent rectangle is to a square, the closer to 1 the
Rectangle ratio.

Shape Features
This section describes the following shape-feature parameters:

• Moments of Inertia—Moments of Inertia Ixx, Iyy, Ixy with respect to the
center of gravity

• Elongation factor—Ratio of the longest segment within the object to
the mean length of the perpendicular segments

• Compactness factor—Ratio of the object area to the area of the
smallest rectangle containing the object

• Heywood Circularity factor —Ratio of the object perimeter to the
perimeter of the circle with the same area

• Hydraulic Radius—Ratio of the object area to its perimeter

• Waddel Disk Diameter—Diameter of the disk with the same area as
the object

Moments of Inertia Ixx, Iyy, Ixy
The moments of inertia give a representation of the distribution of the
pixels in an object with respect to its center of gravity.

Elongation Factor
The elongation factor is the ratio of the longest segment within an object to
the mean length of the perpendicular segments. It is defined as

.

The more elongated the shape of an object, the higher its elongation factor.

rectangle big side
rectangle small side
--- a

b
---=

max intercept
mean perpendicular intercept
--

Chapter 16 Quantitative Analysis

© National Instruments Corporation 16-15 ComponentWorks IMAQ Vision

Compactness Factor
The compactness factor is the ratio of an object area to the area of the
smallest rectangle containing the object. It is defined as

.

The compactness factor belongs to the interval [0, 1]. The closer the shape
of an object is to a rectangle, the closer to 1 the compactness factor.

Heywood Circularity Factor
The Heywood circularity factor is the ratio of an object perimeter to the
perimeter of the circle with the same area. It is defined as

.

 The closer the shape of an object is to a disk, the closer the Heywood
circularity factor to 1.

Hydraulic Radius
The hydraulic radius is the ratio of an object area to its perimeter. It is
defined as

.

If a particle is a disk with a radius R, then its hydraulic radius is equal to

.

The hydraulic radius is equal to half the radius R of the circle such that

.

particle area
breadth width×

particle perimeter
perimeter of circle with same area as particle
--- particle perimeter

2 π particle area×
--=

particle area
particle perimeter
--

πR
2

2πR
---------- R

2
---=

circle area
circle perimeter
------------------------------------- particle area

particle perimeter
--=

Chapter 16 Quantitative Analysis

ComponentWorks IMAQ Vision 16-16 © National Instruments Corporation

Waddel Disk Diameter
Diameter of the disk with the same area as the particle. It is defined as

.

The following tables list the definition of the primary measurements and
the measurements that are derived from them.

Definitions of Primary Measurements
A Area

p Perimeter

Left Left-most point

Top Top-most point

Right Right-most point

Bottom Bottom-most point

Px Projection x

Py Projection y

Derived Measurements

Symbol Derived Measurement Primary Measurement

l Width Right – Left

h Height Bottom – Top

d Diagonal

Mx Center of Mass X (Σx)/A

My Center of Mass Y (Σy)/A

Ixx Inertia XX (Σx2) – A × Mx2

Iyy Inertia YY (Σy2) – A × My2

Ixy Inertia XY (Σxy) – A × Mx × My

2 particle area

π

l
2

h
2

+

Chapter 16 Quantitative Analysis

© National Instruments Corporation 16-17 ComponentWorks IMAQ Vision

Cx Mean Chord X A/Py

Cy Mean Chord X A/Px

Smax Max Intercept (Cmax /h)2 × max(h, l) + d(1 – (Cmax /l)2)

C Mean Perpendicular
Intercept

A/Smax

A2b Equivalent Ellipse
Minor Axis

4 × A / (Smax)

d° Orientation If Ixx = Iyy, then d°= 45,

else d° =

 If Ixx ≥ Iyy and Ixy ≥ 0, then d° = 180 - d°

If Ixx ≥ Iyy and Ixy < 0, then d° = –d°

If Ixx < Iyy, then d° = 90 – d°

If d° < 0, then d° = 0°

E2a Ellipse major axis (2a)

E2b Ellipse minor axis (2b)

Eab Ellipse Ratio E2a / E2b

Rc Rectangle big side ¼ (p + t´) where t´ =

rc Rectangle small side ¼ (p – t´) where t´ =

RRr Rectangle Ratio Rc /rc

Fe Elongation factor Smax /C

Fc Compactness factor A/(h × l)

FH Heywood Circularity
factor

Symbol Derived Measurement Primary Measurement

π

90
2 IXY IXX IYY–()÷×()atan

E2a
p

2

2π2
--------- 2π

A
------+= p

2

2π2
--------- 2π

A
------–+

2b
p

2

2π2
--------- 2π

A
------+ p

2

2π2
--------- 2π

A
------––=

p
2

16A–

p
2

16A–

π

p

2 πA

Chapter 16 Quantitative Analysis

ComponentWorks IMAQ Vision 16-18 © National Instruments Corporation

Densitometry
IMAQ Vision contains the following densitometry parameters:

• Minimum Gray Value —Minimum intensity value in gray-level units

• Maximum Gray Value—Maximum intensity value in gray-level
units

• Sum Gray Value—Sum of the intensities in the object expressed in
gray-level units

• Mean Gray Value—Mean intensity value in the object expressed in
gray-level units

• Standard deviation—Standard deviation of the intensity values

• Minimum User Value—Minimum intensity value in user units

• Maximum User Value—Maximum intensity value in user units

• Sum User Value—Sum of the intensities in the object expressed in
user units

• Mean User Value —Mean intensity value in the object expressed in
user units

• Standard deviation (Unit)—Standard deviation of the intensity
values in user units

Diverse Measurements
These primary coefficients are used in the computation of measurements
such as moments of inertia and center of gravity. IMAQ Vision contains
the following diverse-measurement parameters

• SumX—Sum of the x coordinates of each pixel in a particle

• SumY—Sum of the y coordinates of each pixel in a particle

• SumXX, SumYY, SumXY—Sum of x coordinates squared, sum of
y coordinates squared, and sum of xy coordinates for each pixel in a
particle

Ft Type factor

Rh Hydraulic Radius A/p

Rd Waddel Disk Diameter

Symbol Derived Measurement Primary Measurement

A
2

4π IXX IYY×

2 A
π

Chapter 16 Quantitative Analysis

© National Instruments Corporation 16-19 ComponentWorks IMAQ Vision

• Corrected Projection X—Sum of the horizontal segments that do not
superimpose any other horizontal segment

• Corrected Projection Y—Sum of the vertical segments that do not
superimpose any other horizontal segment

© National Instruments Corporation A-1 ComponentWorks IMAQ Vision

A
Common Questions

This appendix contains answers to frequently asked questions.

How do I use the AutoDelete property on the CWIMAQViewer
control?

When set to TRUE, the AutoDelete property removes all existing Region
objects in the Regions collection when a new region is added with the
mouse. To prevent existing Region objects from being removed, press the
<Shift> key as you add the region or set AutoDelete to FALSE.

How do I use the Active property on the CWIMAQRegion object?

Region objects that have their Active property set to TRUE are used by
methods on the Regions collection. For example, the RegionsToMask
method creates a mask image including all regions with Active set
to TRUE.

How can I access individual elements of an IMAQ Vision report?

Pass the index of the element that you want to get or set to the property of
the report. Reports are indexed starting at 1. For example, the following
code returns the polarity of the first edge.

polarity = CWIMAQEdgeReport.Polarity(1)

How do I size the CWIMAQViewer control to match the size of the
image that it is viewing?

To match the size of the viewer to the image, set the Height and Width
properties of the Viewer object. If you use the BorderWidth property, add
that value to the Height and Width properties. For example, if the
BorderWidth is 10, add 10 pixels to the Width and Height properties.

Why do I get a type error when using a color or complex
CWIMAQVision method?

Some IMAQ Vision functions only operate on specific image types. You
can change the image type by setting the Type property on the Image
object.

Appendix A Common Questions

ComponentWorks IMAQ Vision A-2 © National Instruments Corporation

The user response of my application seems to decrease when a
CWIMAQViewer control is updating rapidly. How can I correct this?

Set ImmediateUpdates on the Viewer to FALSE to prevent the Viewer
from redrawing on every image update. When ImmediateUpdates is set
to FALSE, the application redraws only when instructed by the operating
system.

How can I stop drawing a polygon or broken line region in the
CWIMAQViewer control?

Hold down the <Ctrl> key when selecting the last point of the region.
Polygon regions automatically close themselves by connecting the first and
last points with a line segment.

© National Instruments Corporation B-1 ComponentWorks IMAQ Vision

B
Error Codes

This appendix lists the error codes returned by ComponentWorks, the
ComponentWorks IMAQ controls, IMAQ hardware, and Vision.

Table B-1. ComponentWorks Errors

Error Code Description

–30000 Unexpected error.

–30002 You have passed an invalid value for one of the
parameters to the function, method, or property.

–30003 You have passed an invalid type into a parameter of a
Variant type.

–30004 Divide by zero error.

–30005 Result of a calculation is an imaginary number.

–30006 Overflow error.

–30007 Out of memory.

–30008 You have called a function or method requiring a
ComponentWorks product for which you do not have
a license. For example, you might be using a method
that is not supported in the base or standard Analysis
package. To upgrade your product, contact National
Instruments.

Table B-2. ComponentWorks IMAQ Errors

Error Code Description

–30200 Corrupt camera file detected.

–30201 Change requires reconfigure to take effect.

–30202 Interface still locked.

–30203 Unstable blanking reference.

Appendix B Error Codes

ComponentWorks IMAQ Vision B-2 © National Instruments Corporation

–30204 Bad quality colorburst.

–30205 IMAQ operation not configured.

–30206 IMAQ operation not active.

–30207 IMAQ operation cannot be started because it is not
configured or is currently active.

–30208 Triggered asynchronous acquisitions are not
supported with StillColor enabled.

–30209 Triggered asynchronous acquisitions require
NI-IMAQ version 2.0 or greater.

–30210 Object has been locked by an ongoing acquisition and
cannot be modified.

–30211 IMAQ Operation Active.

–30212 Maximum number of RTSI lines already in use.

–30213 Cannot load IMAQ Vision DLL.

–30214 Cannot load IMAQ DLL. Make sure the IMAQ driver
is installed correctly.

–30215 Specified function is not located in the driver.

–30216 Maximum number of devices in use exceeded.

–30217 Specified device is already in use by another
CWIMAQ control.

–30218 Currently selected color mode is not supported by the
specified device.

–30219 Invalid ColorMode for specified device.

–30220 Invalid FrameFieldMode for specified device.

–30221 Acquisition timed out.

Table B-2. ComponentWorks IMAQ Errors (Continued)

Error Code Description

Appendix B Error Codes

© National Instruments Corporation B-3 ComponentWorks IMAQ Vision

Table B-3. IMAQ Errors

Error Code Description

–30801 Function not implemented.

–30802 Too many interfaces open.

–30803 Not enough memory to perform the operation.

–30804 Operating system error occurred.

–30805 Invalid parameter #1.

–30806 Invalid parameter #2.

–30807 Invalid parameter #3.

–30808 Invalid parameter #4.

–30809 Invalid parameter #5.

–30810 Invalid parameter #6.

–30811 Invalid parameter #7.

–30812 Too many buffers already allocated.

–30813 DLL internal error—bad logic state.

–30814 Buffer size is too small for minimum acquisition
frame.

–30815 Exhausted buffer ids.

–30816 Not enough physical memory.

–30817 Error releasing the image buffer.

–30818 Bad buffer pointer in list.

–30819 Buffer list is not locked.

–30820 No camera defined for this channel.

–30821 Bad interface.

–30822 Rowbytes is less than region of interest.

–30823 ROI width is greater than rowbytes.

–30824 No interface or bad camera file.

–30825 Hardware limitation.

Appendix B Error Codes

ComponentWorks IMAQ Vision B-4 © National Instruments Corporation

–30826 Invalid action—no buffers configured for session.

–30827 Buffer list does not contain a valid final command.

–30828 Buffer list contains an invalid command.

–30829 A buffer list frame buffer address is null.

–30830 No acquisition in progress.

–30831 Cannot lock on video source.

–30832 Bad DMA transfer—use reset.

–30833 Unable to perform request—acquisition in progress.

–30834 Wait timed out—acquisition not complete.

–30835 No buffers available—too early in acquisition.

–30836 Zero buffer size—no bytes filled.

–30837 Bad parameter to low level—check attributes and
high level arguments.

–30838 Rigger loopback problem—cannot drive with action
enabled.

–30839 No interface found.

–30840 Unable to load DLL.

–30841 Unable to find API function in DLL.

–30842 Unable to allocate system resources.

–30843 No trigger action—acquisition will time out.

–30844 FIFO overflow caused acquisition to halt.

–30845 Memory lock error—cannot perform acquisition.

–30846 Interface locked.

–30847 No external pixel clock.

–30848 Field scaling mode not supported.

–30849 Channel not set to 1 when using StillColor RGB
acquisition.

Table B-3. IMAQ Errors (Continued)

Error Code Description

Appendix B Error Codes

© National Instruments Corporation B-5 ComponentWorks IMAQ Vision

–30850 Error during small buffer allocation.

–30851 Error during large buffer allocation.

–30852 Bad camera type—camera needs to be of type NTSC
or PAL.

–30853 Camera not supported—must be an 8-bit camera.

–30854 Bad camera parameter in configuration file.

–30855 PAL key detection error.

Table B-4. Vision Errors

Error Code Description

–31000 Demo version timeout.

–31001 System error.

–31002 Memory full.

–31003 Memory error.

–31004 Bad image reference.

–31005 Image reference not specified.

–31006 Bad image type.

–31007 Image(s) type incompatible.

–31008 Image(s) size incompatible.

–31009 Bad border size.

–31010 Image type not supported.

–31011 Image types must be the same.

–31012 Unable to open driver.

–31013 IO error.

–31014 Board not found.

–31015 IO timeout.

Table B-3. IMAQ Errors (Continued)

Error Code Description

Appendix B Error Codes

ComponentWorks IMAQ Vision B-6 © National Instruments Corporation

–31016 String cannot be NULL.

–31017 Bad file header.

–31018 Bad file type.

–31019 Color table error.

–31020 Invalid parameter.

–31021 File already open for writing.

–31022 File not found.

–31023 Too many files open.

–31024 Unspecified I/O error.

–31025 Access denied.

–31026 File type not supported.

–31027 Unable to get info.

–31028 Unable to read data.

–31029 Unable to write data.

–31030 End of file occurred.

–31031 Bad file format.

–31032 Bad file operation (info, read, write).

–31033 File data type not supported.

–31034 GUI initialization error.

–31035 GUI unable to create window.

–31036 GUI bad window id.

–31037 Image window does not exist.

–31038 Bad window attribute.

–31039 Bad number of classes.

–31040 Bad particle.

–31041 Bad number of measure.

Table B-4. Vision Errors (Continued)

Error Code Description

Appendix B Error Codes

© National Instruments Corporation B-7 ComponentWorks IMAQ Vision

–31042 Kernel internal error.

–31043 DLL not found.

–31044 DLL access error.

–31045 Bad ROI descriptor.

–31046 Bad ROI global rectangle.

–31047 8-bit image expected.

–31048 16-bit image expected.

–31049 Float image expected.

–31050 Complex image expected.

–31051 RGB image expected.

–31052 Bad complex plane.

Table B-4. Vision Errors (Continued)

Error Code Description

© National Instruments Corporation C-1 ComponentWorks IMAQ Vision

C
Distribution and
Redistributable Files

This chapter contains information about ComponentWorks IMAQ Vision
redistributable files and distributing applications that use
ComponentWorks controls.

Files
The files in the \Setup\redist directory of the ComponentWorks IMAQ
CD are necessary for distributing applications and programs that use
ComponentWorks controls. You need to distribute only those files needed
by the controls you are using in your application.

Distribution
When installing an application using ComponentWorks IMAQ controls on
another computer, you also must install the necessary control files and
supporting libraries on the target machine. In addition to installing all
necessary OCX files on a target computer, you must register each of these
files with the operating system. This allows your application to find the
correct OCX file and create the controls.

If your application performs any I/O operations requiring separate driver
software, such as image acquisition, you must install and configure the
driver software and corresponding hardware on the target computer. For
more information, consult the hardware documentation for the specific
driver used.

When distributing applications with the ComponentWorks IMAQ controls,
do not violate the license agreement (section 5) provided with the software.
If you have any questions about the licensing conditions, contact National
Instruments.

Appendix C Distribution and Redistributable Files

ComponentWorks IMAQ Vision C-2 © National Instruments Corporation

Automatic Installers
Many programming environments include some form of a setup or
distribution kit tool. This tool automatically creates an installer for your
application so that you can easily install it on another computer. To
function successfully, this tool must recognize which control files and
supporting libraries are required by your application and include these in
the installer it creates. The resulting installer also must register the controls
on the target machine.

Some of these tools, such as the Visual Basic 5 Setup Wizard, use
dependency files to determine which libraries are required by an OCX file.
The ComponentWorks IMAQ OCX file includes a corresponding
dependency file located in the \Windows\System directory
(\Windows\System32 for WindowsNT) after you install the
ComponentWorks IMAQ software.

Some setup tools might not automatically recognize which files are
required by an application but provide an option to add additional files to
the installer. In this case, verify that all necessary OCX files (corresponding
to the controls used in your application) as well as all the DLL and TLB
files from the \redist directory are included. You also should verify that
the resulting installer does not copy older versions of a file over a newer
version on the target machine.

If your programming environment does not provide a tool or wizard for
building an installer, you may use third-party tools, such as InstallShield.
Some programming environments provide simplified or trial versions of
third-party installer creation tools on their installation CDs.

Manual Installation
If your programming environment does not include a setup or distribution
kit tool, you must build your own installer and perform the installation task
manually. To install your application on another computer, follow these
steps:

1. Copy the application executable to the target machine.

2. Copy the ComponentWorks IMAQ OCX file to the System directory
(\Windows\System for Windows 95 or \Windows\System32 for
WindowsNT) on the target machine.

Appendix C Distribution and Redistributable Files

© National Instruments Corporation C-3 ComponentWorks IMAQ Vision

3. Copy all DLL and TLB files in the \redist directory to the System
directory on the target machine.

4. Copy any other DLLs and support files required by your application to
the System directory on the target machine.

Some of these files might already be installed on the target machine. If the
file on the target machine has an earlier version number than the file in the
\redist directory, copy the newer file to the target machine.

After copying the files to the target machine, you must register all OCX
files with the operating system. To register an OCX file, you need a utility
such as REGSVR32.EXE. You must copy this utility to the target machine to
register the OCX files, but you can delete it after completing the
installation. Use this utility to register each OCX file with the operating
system, as in the following example.

regsvr32 c:\windows\system\cwimaq.ocx

ComponentWorks IMAQ Evaluation
Once the ComponentWorks IMAQ OCX file is installed and registered on
a target computer, your application can create the controls as necessary.
You or your customer also can use the same OCX file in any compatible
development environment as an evaluation version of the controls.
If desired, you may distribute the ComponentWorks IMAQ reference files
(from the \redist directory) with your application, which provide
complete documentation of the ComponentWorks IMAQ controls when
used in evaluation mode.

If you would like to use the ComponentWorks IMAQ controls as a
development tool on this target machine, you must purchase another
ComponentWorks IMAQ development system. Contact National
Instruments to purchase additional copies of the ComponentWorks IMAQ
software.

Run-Time Licenses
For each copy of your ComponentWorks IMAQ-based application that
you distribute, you must have a valid run-time license. A limited number
of run-time licenses are provided with the ComponentWorks IMAQ
development systems. National Instruments driver software might also
provide you with ComponentWorks IMAQ run-time licenses. You can
purchase additional ComponentWorks IMAQ run-time licenses from

Appendix C Distribution and Redistributable Files

ComponentWorks IMAQ Vision C-4 © National Instruments Corporation

National Instruments. Consult the license agreement (section 5) provided
with the software for more detailed information. If you have any questions
about the licensing conditions, contact National Instruments.

Troubleshooting
Try the following suggestions if you encounter problems after installing
your application on another computer.

The application is not able to find an OCX file or is not able to create
a control.

• The control file or one of its supporting libraries is not copied on the
computer. Verify that the correct OCX files and all their supporting
libraries are copied on the machine. If one control was built using
another, you might need multiple OCX files for one control.

• The control is not properly registered on the computer. Make sure you
run the registration utility and that it registers the control.

Controls in the application run in evaluation (demo) mode.

• The application does not contain the correct run-time license. When
developing your application, verify that the controls are running in a
fully licensed mode. Although most programming environments
include a run-time license for the controls in the executable, some
do not.

If you are developing an application in Visual C++ using SDI (single
document interface) or MDI (multiple document interface), you must
include the run-time license in the program code for each control you
create. Consult the ComponentWorks documentation, National
Instruments Knowledgebase (www.natinst.com/support) or
technical support if you are not familiar with this operation.

© National Instruments Corporation D-1 ComponentWorks IMAQ Vision

D
Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form and
the configuration form, if your manual contains one, about your system configuration to answer your
questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to quickly
provide the information you need. Our electronic services include a bulletin board service, an FTP site,
a fax-on-demand system, and e-mail support. If you have a hardware or software problem, first try the
electronic support systems. If the information available on these systems does not answer your
questions, we offer fax and telephone support through our technical support centers, which are staffed
by applications engineers.

Electronic Services

Bulletin Board Support
National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of files
and documents to answer most common customer questions. From these sites, you can also download
the latest instrument drivers, updates, and example programs. For recorded instructions on how to use
the bulletin board and FTP services and for BBS automated information, call 512 795 6990. You can
access these services at:

United States: 512 794 5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support
To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and use
your Internet address, such as joesmith@anywhere.com , as your password. The support files and
documents are located in the /support directories.

ComponentWorks IMAQ Vision D-2 © National Instruments Corporation

Fax-on-Demand Support
Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access Fax-on-Demand from a touch-tone telephone at
512 418 1111.

E-Mail Support (Currently USA Only)
You can submit technical support questions to the applications engineering team through e-mail at the
Internet address listed below. Remember to include your name, address, and phone number so we can
contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the technical
support number for your country. If there is no National Instruments office in your country, contact
the source from which you purchased your software to obtain support.

Country Telephone Fax
Australia 03 9879 5166 03 9879 6277
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Brazil 011 288 3336 011 288 8528
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 725 725 11 09 725 725 55
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 6120092 03 6120095
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5 520 2635 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
United Kingdom 01635 523545 01635 523154
United States 512 795 8248 512 794 5678

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, and use
the completed copy of this form as a reference for your current configuration. Completing this form
accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pages if necessary.

Name __

Company ___

Address __

Fax (___) ________________Phone (___) __

Computer brand____________ Model ___________________Processor _____________________

Operating system (include version number) __

Clock speed ______MHz RAM _____MB Display adapter __________________________

Mouse ___yes ___no Other adapters installed_______________________________________

Hard disk capacity _____MB Brand___

Instruments used ___

National Instruments hardware product model _____________ Revision ____________________

Configuration ___

National Instruments software product ___________________ Version _____________________

Configuration ___

The problem is: __

List any error messages: ___

The following steps reproduce the problem: ___

ComponentWorks IMAQ Vision Hardware and Software
Configuration Form
Record the settings and revisions of your hardware and software on the line to the right of each item.
Complete a new copy of this form each time you revise your software or hardware configuration, and
use this form as a reference for your current configuration. Completing this form accurately before
contacting National Instruments for technical support helps our applications engineers answer your
questions more efficiently.

National Instruments Products
IMAQ hardware ___

Interrupt level of hardware ___

DMA channels of hardware __

Base I/O address of hardware ___

Programming choice ___

ComponentWorks and NI-IMAQ version ___

Other boards in system __

Base I/O address of other boards __

DMA channels of other boards ___

Interrupt level of other boards __

Other Products
Computer make and model __

Microprocessor __

Clock frequency or speed __

Type of video board installed ___

Operating system version __

Operating system mode ___

Programming language ___

Programming language version ___

Other boards in system __

Base I/O address of other boards __

DMA channels of other boards ___

Interrupt level of other boards __

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our products.
This information helps us provide quality products to meet your needs.

Title: Getting Results with ComponentWorks™ IMAQ Vision

Edition Date: June 1998

Part Number: 321883A-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name ___

Title __

Company ___

Address __

E-Mail Address __

Phone (___) __________________________ Fax (___) _______________________________

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway 512 794 5678
Austin, Texas 78730-5039

© National Instruments Corporation G-1 ComponentWorks IMAQ Vision

Glossary

Prefix Meanings Value

p- pico 10–12

n- nano- 10–9

µ- micro- 10– 6

m- milli- 10–3

k- kilo- 103

M- mega- 106

G- giga- 109

t- tera- 1012

Numbers

1D One-dimensional.

2D Two-dimensional.

3D Three-dimensional.

3D view Displays the light intensity of an image in a three-dimensional coordinate
system, where the spatial coordinates of the image form two dimensions
and the light intensity forms the third dimension.

A

ActiveX Set of Microsoft technologies for reusable software components. Formerly
called OLE.

ActiveX control Standard software tool that adds additional functionality to any compatible
ActiveX container. The DAQ, UI, and analysis tools in ComponentWorks
are all ActiveX controls. An ActiveX control has properties, methods,
objects, and events.

Glossary

ComponentWorks IMAQ Vision G-2 © National Instruments Corporation

AIPD The National Instruments internal image format used for saving calibration
information associated with an image and for saving complex images.

area threshold Detects objects based on their size, which can fall within a user-specified
range.

arithmetic operators The image operations multiply, divide, add, subtract, and remainder.

asynchronous Property of a function or operation that begins an operation and returns
control to the program prior to the completion or termination of the
operation.

auto-median function A function that uses dual combinations of opening and closing operations
to smooth the boundaries of objects.

B

binary image An image containing objects usually represented with a pixel intensity
of 1 (or 255) and the background of 0.

binary morphology Functions that perform morphological operations on a binary image.

BMP Image format commonly used for 8-bit images on PCs.

border function Removes objects (or particles) in a binary image that touch the image
border.

C

caliper Finds edge pairs along a specified path in the image. This function performs
an edge extraction and then finds edge pairs based on specified criteria such
as the distance between the leading and trailing edges, edge contrasts, and
so forth.

circle function Detects circular objects in a binary image.

closing A dilation followed by an erosion. A closing fills small holes in objects and
smooths the boundaries of objects.

Glossary

© National Instruments Corporation G-3 ComponentWorks IMAQ Vision

collection Control property and object that contains a number of objects of the same
type, such as pointers, axes, and plots. The type name of the collection is
the plural of the type name of the object in the collection. For example, a
collection of CWAxis objects is called CWAxes. To reference an object in
the collection, you must specify the object as part of the collection, usually
by index. For example, CWGraph.Axes.Item(2) is the second axis in the
CWAxes collection of a graph.

color images Images containing color information, usually encoded in the RGB form.

color lookup table Table for converting the value of a pixel in an image into a red, green, and
blue (RGB) intensity.

complex images Save information obtained from the FFT of an image. The complex
numbers which compose the FFT plane are encoded in 64-bit floating-point
values: 32 bits for the real part and 32 bits for the imaginary part.

connectivity Defines which of the surrounding pixels of a given pixel constitute its
neighborhood.

connectivity-4 Only pixels adjacent in the horizontal and vertical directions are considered
neighbors.

connectivity-8 All adjacent pixels are considered as neighbors.

control Standard software tool that adds additional functionality to a compatible
environment. ComponentWorks is a collection of ActiveX controls that
have properties, methods, objects, and events.

convex function Computes the convex regions of objects in a binary image.

convolution See linear filter.

convolution kernel Simple 3 × 3, 5 × 5, or 7 × 7 matrices (or templates) used to represent the
filter in the filtering process. The contents of these kernels are a discrete
two-dimensional representation of the impulse response of the filter that
they represent.

D

Danielsson function Similar to the distance functions, but with more accurate results.

density function For each gray level in a linear histogram, it gives the number of pixels in
the image that have the same gray level.

Glossary

ComponentWorks IMAQ Vision G-4 © National Instruments Corporation

device Plug-in data acquisition board that can contain multiple channels and
conversion devices.

differentiation filter Extracts the contours (edge detection) in gray level.

digital image An image f (x, y) that has been converted into a discrete number of pixels.
Both spatial coordinates and brightness are specified.

dilation Increases the size of an object along its boundary and removes tiny holes in
the object.

distance calibration Determination of the physical dimensions of a pixel by defining the
physical dimensions of a line in the image.

distance function Assigns to each pixel in an object a gray-level value equal to its shortest
Euclidean distance from the border of the object.

driver Software that controls a specific hardware device, such as a data acquisition
board.

E

edge Defined by a sharp change (transition) in the pixel intensities in an image
or along an array of pixels.

edge contrast The difference between the average pixel intensity before and the average
pixel intensity after the edge.

edge hysteresis The difference in threshold level between a rising and a falling edge.

edge steepness The number of pixels that corresponds to the slope or transition area of an
edge.

Equalize function See histogram equalization.

erosion Reduces the size of an object along its boundary and eliminates isolated
points in the image.

event Object-generated response to some action or change in state, such as a
mouse click or x number of points being acquired. The event calls an event
handler (callback function), which processes the event. Events are defined
as part of an OLE control object.

event handler See callback (function) and event.

Glossary

© National Instruments Corporation G-5 ComponentWorks IMAQ Vision

exception Error message generated by a control and sent directly to the application or
programming environment containing the control.

exponential and gamma
corrections

Expand the high gray-level information in an image while suppressing low
gray-level information.

Exponential function Decreases the brightness and increases the contrast in bright regions of an
image, and decreases contrast in dark regions.

F

Fast Fourier Transform A method used to compute the Fourier transform of an image.

FFT Fast Fourier Transform.

form Window or area on the screen on which you place controls and indicators
to create the user interface for your program.

Fourier spectrum The magnitude information of the Fourier transform of an image.

Fourier Transform Transforms an image from the spatial domain to the frequency domain.

frequency filters Counterparts of spatial filters in the frequency domain. For images,
frequency information is in the form of spatial frequency.

FTP File Transfer Protocol. Protocol based on TCP/IP to exchange files between
computers.

G

Gaussian filter A filter similar to the smoothing filter, but using a Gaussian kernel in the
filter operation. The blurring in a Gaussian filter is more gentle than a
smoothing filter.

gradient convolution
filter

See gradient filter.

gradient filter Extracts the contours (edge detection) in gray-level values. Gradient filters
include the Prewitt and Sobel filters.

gray level The brightness of a point (pixel) in an image.

Glossary

ComponentWorks IMAQ Vision G-6 © National Instruments Corporation

gray-level dilation Increases the brightness of pixels in an image that are surrounded by other
pixels with a higher intensity.

gray-level erosion Reduces the brightness of pixels in an image that are surrounded by other
pixels with a lower intensity.

gray-level images Images with monochrome information.

gray-level morphology Functions that perform morphological operations on a gray-level image.

H

highpass attenuation Inverse of lowpass attenuation.

highpass FFT filter Removes or attenuates low frequencies present in the FFT domain of an
image.

highpass filter Emphasizes the intensity variations in an image, detects edges (or object
boundaries), and enhances fine details in an image.

highpass frequency filter Attenuates or removes (truncates) low frequencies present in the frequency
domain of the image. A highpass frequency filter suppresses information
related to slow variations of light intensities in the spatial image.

highpass truncation Inverse of lowpass truncations.

histogram Indicates the quantitative distribution of the pixels of an image per
gray-level value.

histogram equalization Transforms the gray-level values of the pixels of an image to occupy the
entire range (0 to 255 in an 8-bit image) of the histogram, increasing the
contrast of the image.

hit-miss function Locates objects in the image similar to the pattern defined in the structuring
element.

hole filling function Fills all holes in objects that are present in a binary image.

HSL Color encoding scheme in Hue, Saturation, and Lightness.

HSV Color encoding scheme in Hue, Saturation, and Value.

Glossary

© National Instruments Corporation G-7 ComponentWorks IMAQ Vision

I

image A two-dimensional light intensity function f (x, y), where, x and y denote
spatial coordinates and the value f at any point (x, y) is proportional to the
brightness at that point.

image file A file containing image information and data.

image processing Encompasses various processes and analysis functions which you can
apply to an image.

image visualization The presentation (display) of an image (image data) to the user.

inner gradient Finds the inner boundary of objects.

inspection functions Detects specific features in an image. The features detected include edges,
peaks, and rotational shifts.

intensity calibration Assigning user-defined quantities such as optical densities or
concentrations to the gray-level values in an image.

intensity range Defines the range of gray-level values in an object of an image.

intensity threshold Characterizes an object based on the range of gray-level values in the
object. If the intensity range of the object falls within the user specified
range, it is considered an object; otherwise it is considered part of the
background.

interpolation Is the technique used to find values in between known values when
resampling an image or array of pixels.

L

labeling The process by which each object in a binary image is assigned a unique
value. This process is useful for identifying the number of objects in the
image and giving each object a unique identity.

Laplacian filter Extracts the contours of objects in the image by highlighting the variation
of light intensity surrounding a pixel.

line gauge Measures the distance between selected edges with high-precision subpixel
accuracy along a line in an image. For example, this function can be to
measure distances between points and edges and vice versa. This function
also can step and repeat its measurements across the image.

Glossary

ComponentWorks IMAQ Vision G-8 © National Instruments Corporation

line profile Represents the gray-level distribution along a line of pixels in an image.

linear filter A special algorithm that calculates the value of a pixel based on its own
pixel value as well as the pixel values of its neighbors. The sum of this
calculation is divided by the sum of the elements in the matrix to obtain a
new pixel value.

logarithmic and inverse
gamma corrections

Expand low gray-level information in an image while compressing
information from the high gray-level ranges.

Logarithmic function Increases the brightness and contrast in dark regions of an image, and
decreases the contrast in bright regions of the image.

Logic operators The image operations AND, NAND, OR, XOR, NOR, difference, mask,
mean, max, and min.

lookup table Table containing values used to transform the gray-level values of an
image. For each gray-level value in the image, the corresponding new value
is obtained from the lookup table.

lowpass attenuation Applies a linear attenuation to the frequencies in an image, with no
attenuation at the lowest frequency and full attenuation at the highest
frequency.

lowpass FFT filter Removes or attenuates high frequencies present in the FFT domain of an
image.

lowpass filter Attenuates intensity variations in an image. You can use these filters to
smooth an image by eliminating fine details and blurring edges.

lowpass frequency filter Attenuates high frequencies present in the frequency domain of the image.
A lowpass frequency filter suppresses information related to fast variations
of light intensities in the spatial image.

lowpass truncation Removes all frequency information above a certain frequency.

L-skeleton function Uses an L-shaped structuring element in the Skeleton function.

M

mask Isolates parts of an image for further processing.

mask filter Removes frequencies contained in a mask (range) specified by the user.

Glossary

© National Instruments Corporation G-9 ComponentWorks IMAQ Vision

mask image An image containing a value of 1 and values of 0. Pixels in the source image
with a corresponding mask image value of 1 are processed, while the others
are left unchanged.

mechanical action Specifies how a zone is activated. In the Switch mode, the first click on a
zone turns the zone to TRUE and a second click turns it to FALSE. In the
Latch mode, a click causes the zone to be temporarily TRUE.

median filter A low pass filter that assigns to each pixel the median value of its
neighbors. This filter effectively removes isolated pixels without blurring
the contours of objects.

method Function that performs a specific action on or with an object. The operation
of the method often depends on the values of the object properties.

mile An Imperial unit of length equal to 5,280 feet or 1,609.344 meters. Also
known as a statute mile to discern from a nautical mile. See also nautical
mile.

morphological
transformations

Extract and alter the structure of objects in an image. You can use these
transformations for expanding (dilating) or reducing (eroding) objects,
filling holes, closing inclusions, or smoothing borders. They mainly are
used to delineate objects and prepare them for quantitative inspection
analysis.

M-skeleton Uses an M-shaped structuring element in the skeleton function.

N

nautical mile International unit of length used for sea and air navigation equal to
6,076.115 feet or 1,852 meters. See also mile.

neighborhood operations Operations on a point in an image that take into consideration the values of
the pixels neighboring that point.

nonlinear filter Replaces each pixel value with a nonlinear function of its surrounding
pixels.

nonlinear gradient filter A highpass edge-extraction filter that favors vertical edges.

Glossary

ComponentWorks IMAQ Vision G-10 © National Instruments Corporation

nonlinear Prewitt filter A highpass edge-extraction filter that favors horizontal and vertical edges
in an image.

nonlinear Sobel filter A highpass edge-extraction filter that favors horizontal and vertical edges
in an image.

Nth order filter Filters an image using a nonlinear filter. This filter orders (or classifies) the
pixel values surrounding the pixel being processed. The pixel being
processed is set to the Nth pixel value, where N is the order of the filter.

O

object Software tool for accomplishing tasks in different programming
environments. An object can have properties, methods, and events.
You change an object’s state by changing the values of its properties.
An object’s behavior consists of the operations (methods) that can be
performed on it and the accompanying state changes.

See property, method, event.

Object Browser Dialog window that displays the available properties and methods for
the controls that are loaded. The object browser shows the hierarchy
within a group of objects. To activate the object browser in Visual Basic,
press <F2>.

OCX OLE Control eXtension. Another name for ActiveX controls, reflected by
the .OCX file extension of ActiveX control files.

OLE Object Linking and Embedding. See ActiveX.

OLE control See ActiveX control.

opening An erosion followed by a dilation. An opening removes small objects and
smoothes boundaries of objects in the image.

operators Allow masking, combination, and comparison of images. You can use
arithmetic and logic operators in IMAQ Vision.

optical representation Contains the low-frequency information at the center and the high-
frequency information at the corners of an FFT-transformed image.

outer gradient Finds the outer boundary of objects.

Glossary

© National Instruments Corporation G-11 ComponentWorks IMAQ Vision

P

palette The gradation of colors used to display an image on screen, usually defined
by a color lookup table.

PICT Image format commonly used for 8-bit images on Macintosh and Power
Macintosh platforms.

picture element An element of a digital image.

pixel Picture element.

pixel calibration Directly calibrating the physical dimensions of a pixel in an image.

pixel depth The number of bits used to represent the gray level of a pixel.

Power 1/Y function Similar to a logarithmic function but with a weaker effect.

Power Y function See exponential function.

Prewitt filter Extracts the contours (edge detection) in gray-level values using a 3 × 3
filter kernel.

probability function Defines the probability that a pixel in an image has a certain gray-level
value.

proper-closing A finite combination of successive closing and opening operations that you
can use to fill small holes and smooth the boundaries of objects.

proper-opening A finite combination of successive opening and closing operations that you
can use to remove small particles and smooth the boundaries of objects.

property Attribute that controls the appearance or behavior of an object. The
property can be a specific value or another object with its own properties
and methods. For example, a value property is the color (property) of a plot
(object), while an object property is a specific Y axis (property) on a graph
(object). The Y axis itself is another object with properties, such as
minimum and maximum values.

Q

quantitative analysis Obtaining various measurements of objects in an image.

Glossary

ComponentWorks IMAQ Vision G-12 © National Instruments Corporation

R

reference Link to an external code source in Visual Basic. References are anything
that add additional code to your program, such as OLE controls, DLLs,
objects, and type libraries. You can add references by selecting the
Tools»References… menu.

region of interest An area of the image that is graphically selected from a window displaying
the image. This area can be used focus further processing.

Reverse function Inverts the pixel values in an image, producing a photometric negative of
the image.

RGB Color image encoding using red, green, and blue colors.

RGB chunky Color encoding scheme using red, green and blue (RGB) color information
where each pixel in the color image is encoded using 32 bits: 8 bits for red,
8 bits for green, 8 bits for blue, and 8 bits for the alpha value (unused).

Roberts filter Extracts the contours (edge detection) in gray level, favoring diagonal
edges.

ROI Region of interest.

rotational shift The amount by which one image is rotated with respect to a reference
image. This rotation is computed with respect to the center of the image.

S

segmentation function Fully partitions a labeled binary image into non-overlapping segments,
with each segment containing a unique object.

separation function Separates objects that touch each other by narrow isthmuses.

shape matching Finds objects in an image whose shape matches the shape of the object
specified by a template. The matching process is invariant to rotation and
can be set to be invariant to the scale of the objects.

Sigma filter A highpass filter that outlines edges.

skeleton function Applies a succession of thinning operations to an object until its width
becomes one pixel.

Glossary

© National Instruments Corporation G-13 ComponentWorks IMAQ Vision

skiz Obtains lines in an image that separate each object from the others and are
equidistant from the objects that they separate.

smoothing filter Blurs an image by attenuating variations of light intensity in the
neighborhood of a pixel.

Sobel filter Extracts the contours (edge detection) in gray-level values using a
3 × 3 filter kernel.

spatial calibration Assigning physical dimensions to the area of a pixel in an image.

spatial filters Alter the intensity of a pixel with respect to variations in intensities of its
neighboring pixels. You can use these filters for edge detection, image
enhancement, noise reduction, smoothing, and so forth.

spatial resolution The number of pixels in an image, in terms of the number of rows and
columns in the image.

Square function See exponential function.

Square Root function See logarithmic function.

standard representation Contains the low-frequency information at the corners and high-frequency
information at the center of an FFT-transformed image.

start condition Condition on a data acquisition process that determines when the actual
acquisition starts. The condition can be a software trigger, an analog
hardware trigger, or a digital hardware trigger.

statute mile See mile.

stop condition Condition on a data acquisition process that determines when the
acquisition stops. The condition can be none (the acquisition stops when all
points have been acquired), continuous (the acquisition runs continuously),
software analog trigger, hardware analog trigger, or hardware digital
trigger.

structuring element A binary mask used in most morphological operations. A structuring
element is used to determine which neighboring pixels contribute in the
operation.

sub-pixel analysis Used to find the location of the edge coordinates in terms of fractions of a
pixel.

Glossary

ComponentWorks IMAQ Vision G-14 © National Instruments Corporation

synchronous Property or operation that begins an operation and returns control to the
program only when the operation is complete.

syntax Set of rules to which statements must conform in a particular programming
language.

T

thickening Alters the shape of objects by adding parts to the object that match the
pattern specified in the structuring element.

thinning Alters the shape of objects by eliminating parts of the object that match
the pattern specified in the structuring element.

threshold Separates objects from the background by assigning all pixels with
intensities within a specified range to the object and the rest of the pixels
to the background. In the resulting binary image, objects are represented
with a pixel intensity of 255 and the background is set to 0.

threshold interval Two parameters, the lower threshold gray-level value and the upper
threshold gray-level value.

TIFF Image format commonly used for encoding 8-bit and 16-bit images and
color images on both Macintosh and PC platforms.

truth table A table associated with a logic operator which describes the rules used for
that operation.

Z

zones Areas in a displayed image that respond to user clicks.

© National Instruments Corporation I-1 ComponentWorks IMAQ Vision

Index

Numbers
3D view, 10-8

A
acquisition and image processing (tutorial),

7-11 to 7-14
Active property

common questions, A-1
Feature Find application, 8-3 to 8-4

ActiveX controls. See controls.
Add operator (table), 12-2
advanced applications. See application

development.
advanced binary morphology analysis functions.

See binary morphology analysis functions.
alignment functions, IMAQ Vision (table), 7-6
alpha channel, of color images, 9-3
analysis functions, IMAQ Vision (table), 7-4
AND operator (table), 12-2
application development

Delphi, 5-1 to 5-8
building user interface, 5-4 to 5-6
creating standalone objects, 5-8
editing properties

programmatically, 5-6
events, 5-7 to 5-8
loading ComponentWorks controls into

palette, 5-2 to 5-3
methods, 5-6 to 5-7
programming with ComponentWorks,

5-5 to 5-8
running examples, 5-1

Feature Find application, 8-1 to 8-5
AutoDelete, Active, and Visible

properties, 8-3 to 8-4

finding features and displaying results,
8-4 to 8-5

manipulating regions of interest,
8-2 to 8-3

Floppy Disk Inspection application,
8-5 to 8-8

edge detection and shape matching,
8-7 to 8-8

manipulating regions of interest, 8-7
getting started, 2-4 to 2-6
Report objects, 8-8 to 8-9
testing and debugging, 8-9 to 8-14

debugging, 8-13 to 8-14
error and warning events, 8-12 to 8-13
error checking, 8-9 to 8-10
exceptions, 8-10 to 8-11
return codes, 8-11 to 8-12

Visual Basic, 3-1 to 3-10
automatic code completion, 3-9
building user interface, 3-2 to 3-5
creating standalone objects, 3-10
developing event routines, 3-5 to 3-6
loading ComponentWorks IMAQ

Vision controls into toolbox, 3-2
pasting code into programs, 3-8 to 3-9
procedure overview, 3-1
using Object Browser, 3-6 to 3-8
working with methods, 3-5

Visual C++, 4-1 to 4-10
adding ComponentWorks IMAQ Vision

controls to toolbar, 4-3 to 4-4
building user interface, 4-4 to 4-5
creating standalone objects, 4-10
events, 4-9 to 4-10
methods, 4-8
MFC AppWizard, 4-2 to 4-3
procedure overview, 4-1

Index

ComponentWorks IMAQ Vision I-2 © National Instruments Corporation

programming with ComponentWorks
controls, 4-5 to 4-6

properties, 4-6 to 4-8
Application Wizard, MFC, 4-1, 4-2
area of digital objects, 16-5 to 16-7

holes’ area, 16-6
number of holes, 16-6
number of pixels, 16-5
particle area, 16-5
particle number, 16-5
ratio, 16-6
scanned area, 16-6
total area, 16-6 to 16-7

area threshold, 16-4 to 16-5
arithmetic operator functions,

IMAQ Vision (table), 7-3
arithmetic operators

list of operators (table), 12-2
overview, 12-1

asynchronous acquisition
IMAQ Hardware control, 6-8
tutorial, 6-12 to 6-13

attenuation
highpass FFT filters, 14-10
lowpass FFT filters, 14-7

AutoDelete property
common questions, A-1
Feature Find application, 8-3 to 8-4

automatic code completion,
in Visual Basic, 3-9

auto-median function
binary morphology analysis,

15-20 to 15-21
gray-level morphology analysis, 15-36

axes. See chords and axes.
axis of symmetry, gradient filter, 13-6

B
binary morphology analysis functions

advanced, 15-21 to 15-36
border, 15-21
circle, 15-29
comparisons between segmentation

and skiz functions, 15-27
convex, 15-30
Danielsson, 15-28 to 15-29
distance, 15-27
highpass filters, 15-22 to 15-23
hole filling, 15-21
labeling, 15-21
lowpass and highpass filter

example, 15-23
lowpass filters, 15-22
segmentation, 15-26 to 15-27
separation, 15-24
skeleton, 15-24 to 15-26

primary, 15-7 to 15-21
auto-median, 15-20 to 15-21
closing, 15-11
dilation, 15-8
erosion, 15-8
erosion and dilation examples,

15-9 to 15-10
external and internal edge

examples, 15-12
external edge, 15-12
hit-miss, 15-13 to 15-15
internal edge, 15-12
opening, 15-10 to 15-11
opening and closing examples, 15-11
proper-closing, 15-20
proper-opening, 15-19
thickening, 15-17 to 15-19
thinning, 15-15 to 15-17

Index

© National Instruments Corporation I-3 ComponentWorks IMAQ Vision

binary palette, 10-3
border function, binary morphology

analysis, 15-21
breadth parameter, 16-7
breakpoints, 8-13
broken line region, stopping drawing of, A-2
bulletin board support, D-1
B&W (gray) palette, 10-2

C
C++. See Visual C++.
calibration

intensity, 16-2
spatial, 16-1

caliper functions, IMAQ Vision (table), 7-6
center of mass X and center of mass Y,

16-8 to 16-9
chords and axes, 16-9 to 16-11

max chord length, 16-10
max intercept, 16-10
mean chord X, 16-10
mean chord Y, 16-10
mean intercept perpendicular, 16-10
particle orientation, 16-10 to 16-11

circle function, binary morphology
analysis, 15-29

closing function
binary morphology analysis

description, 15-11
examples, 15-11

gray-level morphology analysis
description, 15-33
examples, 15-33 to 15-34

clustering technique, in automatic
thresholding, 15-3 to 15-5

code completion, automatic,
in Visual Basic, 3-9

collection objects, 1-6
color functions, IMAQ Vision (table), 7-5

color images
histogram, 10-6
overview, 9-3
processing, 9-5 to 9-6
standard formats, 9-3
thresholding, 15-3

color lookup table (CLUT) transformation,
9-2. See also lookup table (LUT)
transformations.

common questions, A-1 to A-2
compactness factor parameter, 16-15
complex functions, IMAQ Vision (table), 7-5
complex images, 9-3
ComponentWorks IMAQ Vision

components, 1-1
evaluation mode (note), 1-2
examples structure, 2-4
exploring documentation, 2-2
getting started, 2-1 to 2-6
installing

NI-IMAQ driver software, 2-1
procedure, 1-2 to 1-4

online reference, 2-3
overview, 1-1 to 1-2
sources for additional information, 2-6
system requirements, 1-2

ComponentWorks Support Web Site, 2-6
configuring image acquisition, 6-1
connectivity of digital objects, 16-3 to 16-4

connectivity-4, 16-4
connectivity-8, 16-3

contour extraction and highlighting,
13-14 to 13-15

contour thickness, 13-15 to 13-16
controls, 1-4 to 1-6. See also events; methods;

properties.
collection objects, 1-6
IMAQ Hardware control, 6-5 to 6-9

Index

ComponentWorks IMAQ Vision I-4 © National Instruments Corporation

loading into programming environments
Delphi, 5-2 to 5-3
Visual Basic, 3-2
Visual C++, 4-3 to 4-4

object hierarchy, 1-5 to 1-6
properties, methods, and events,

1-4 to 1-5
Viewer control, 6-2 to 6-5
Vision control, 7-1 to 7-14

convex function, 15-30
convolution, definition, 13-3
convolution filters. See linear or

convolution filters.
convolution kernel, 13-3
coordinates of objects, 16-8 to 16-9

center of mass X and center of mass Y,
16-8 to 16-9

max chord X and max chord Y, 16-9
min(X, Y) and max(X, Y), 16-9

cumulative histogram, 10-6
custom property page

definition, 1-8
example (figure), 1-8

customer communication, xxiii, D-1 to D-2
CWIMAQ control. See IMAQ

Hardware control.
CWIMAQViewer control. See Viewer control.

D
Danielsson function, 15-28 to 15-29
debug print commands, 8-13
debugging applications, 8-13 to 8-14
Delphi, 5-1 to 5-8

building user interface, 5-4 to 5-6
creating standalone objects, 5-8
editing properties programmatically, 5-6
events, 5-7 to 5-8
loading ComponentWorks controls into

palette, 5-2 to 5-3
methods, 5-6 to 5-7

newest version of Delphi required
(note), 5-1

programming with ComponentWorks,
5-5 to 5-8

running examples, 5-1
densitometry parameters, 16-18
developing applications. See application

development.
Difference operator (table), 12-2
differentiation filter, 13-25
digital image processing, 9-1
digital images. See also color images; images.

image definition, 9-2
image resolution, 9-2
number of planes, 9-2 to 9-3
overview, 9-1
properties of digitized images, 9-1 to 9-3

digital objects
criteria for defining, 16-2 to 16-5

area threshold, 16-4 to 16-5
connectivity, 16-3 to 16-4
intensity threshold, 16-2

measurements, 16-5 to 16-19
areas, 16-5 to 16-7
chords and axes, 16-9 to 16-11
coordinates, 16-8 to 16-9
densitometry, 16-18
diverse measurements,

16-18 to 16-19
lengths, 16-7 to 16-8
shape equivalence, 16-11 to 16-14
shape features, 16-14 to 16-18

dilation function
binary morphology analysis

concept and mathematics, 15-8
examples, 15-9 to 15-10

gray-level morphology analysis
concept and mathematics,

15-31 to 15-32
examples, 15-32

direction, gradient filter, 13-6 to 13-7

Index

© National Instruments Corporation I-5 ComponentWorks IMAQ Vision

distance function, binary morphology
analysis, 15-27

distribution and redistribution files, C-1 to
C-4. See also standalone objects, creating.

ComponentWorks IMAQ evaluation, C-3
distribution procedure, C-1 to C-3

automatic installers, C-2
manual installation, C-2 to C-3

files required, C-1
running on target computer, C-3
run-time licenses, C-3 to C-4
troubleshooting, C-4

diverse measurements, 16-18 to 16-19
Divide operator (table), 12-2
documentation. See also online reference.

conventions used in manual, xxii-xxiii
exploring, 2-2
organization of manual, xix-xxii
related documentation, xxiii

E
edge detection (example), 8-7 to 8-8
edge extraction and edge highlighting,

13-7 to 13-8
edge thickness, 13-9
electronic support services, D-1 to D-2
ellipse major axis parameter, 16-12
ellipse minor axis parameter, 16-13
ellipse ratio parameter, 16-13
elongation factor parameter, 16-14
e-mail support, D-2
entropy technique, in automatic

thresholding, 15-5
Equalize function

description, 11-4
examples, 11-4 to 11-5
transfer function (table), 11-3

equivalent ellipse minor axis parameter, 16-12

erosion function
binary morphology analysis

concept and mathematics, 15-8
examples, 15-9 to 15-10

gray-level morphology analysis
concept and mathematics, 15-31
examples, 15-32

error and warning events, adding to
applications, 8-12 to 8-13

error checking, adding to applications,
8-9 to 8-10

error codes
ComponentWorks errors (table), B-1
ComponentWorks IMAQ errors (table),

B-1 to B-2
IMAQ errors (table), B-3 to B-5
Vision errors (table), B-5 to B-7

error handling, IMAQ Hardware control, 6-9
ErrorEventMask property, 6-9
event handler routines, developing

Delphi, 5-7 to 5-8
overview, 1-11
Visual Basic applications, 3-5 to 3-6
Visual C++ applications, 4-9 to 4-10

events
definition, 1-4
learning about, 1-11 to 1-12
Viewer events, 6-4 to 6-5

examples
becoming familiar with, 2-4
location of examples, 2-4

ExceptionOnError property, 6-9
exceptions, adding to applications,

8-10 to 8-11
exponential and gamma corrections

lookup table transformations,
11-8 to 11-10

transfer function (table), 11-3

Index

ComponentWorks IMAQ Vision I-6 © National Instruments Corporation

Exponential function
example, 11-10
lookup transformations, 11-9
transfer functions (table), 11-3

external edge function, binary
morphology analysis

description, 15-12
examples, 15-12

F
Fast Fourier Transform (FFT).

See also FFT display.
definition, 14-3 to 14-4
of gray-level images, 9-3
obtaining frequency representation, 14-1

fax and telephone support numbers, D-2
Fax-on-Demand support, D-2
Feature Find application, 8-1 to 8-5

AutoDelete, Active, and Visible
properties, 8-3 to 8-4

finding features and displaying results,
8-4 to 8-5

manipulating regions of interest,
8-2 to 8-3

FFT display, 14-4 to 14-6
optical representation, 14-6
standard representation, 14-5

files functions, IMAQ Vision (table), 7-2
files installed on hard disk, 1-3 to 1-4
filters. See frequency filters; spatial filters.
filters functions, IMAQ Vision (table),

7-3 to 7-4
finding features on printed circuit board.

See Feature Find application.
Floppy Disk Inspection application, 8-5 to 8-8

edge detection and shape matching,
8-7 to 8-8

manipulating regions of interest, 8-7
frame. See image pixel frame.
frequency filters, 14-1 to 14-12

definition, 14-3 to 14-4
FFT display, 14-4 to 14-6

optical representation, 14-6
standard representation, 14-5

highpass FFT filters, 14-9 to 14-12
attenuation, 14-10
examples, 14-11 to 14-12
overview, 14-2
truncation, 14-10

lowpass FFT filters, 14-7 to 14-9
attenuation, 14-7
examples, 14-8 to 14-9
overview, 14-2
truncation, 14-8

mask FFT filters, 14-2
overview, 14-1 to 14-2

FTP support, D-1

G
Gaussian filters, 13-20 to 13-22

example, 13-20
kernel definition, 13-21
predefined kernels, 13-21 to 13-22

geometry functions, IMAQ Vision (table), 7-4
gradient filters

linear, 13-4 to 13-12
definition, 13-4
edge extraction and edge

highlighting, 13-7 to 13-8
edge thickness, 13-9
example, 13-4 to 13-5
filter axis and direction, 13-6 to 13-7
kernel definition, 13-5
predefined gradient kernels,

13-10 to 13-12
Prewitt filters, 13-10
Sobel filters, 13-11

nonlinear, 13-25
gradient palette, 10-3
gray-level images, 9-3

Index

© National Instruments Corporation I-7 ComponentWorks IMAQ Vision

gray-level morphology analysis functions,
15-31 to 15-36

auto-median, 15-36
closing, 15-33
dilation, 15-31 to 15-32
erosion, 15-31
erosion and dilation examples, 15-32
opening, 15-33
opening and closing examples,

15-33 to 15-34
proper-closing, 15-35
proper-opening, 15-34 to 15-35

gray-level value, 9-1

H
Hardware control.

See IMAQ Hardware control.
height parameter, 16-8
help. See online reference.
hexagonal image pixel frame, 9-8
Heywood circularity factor, 16-15
highpass FFT filters, 14-9 to 14-12

attenuation, 14-10
examples, 14-11 to 14-12
overview, 14-2
truncation, 14-10

highpass filters
binary morphology analysis

description, 15-22 to 15-23
example, 15-23

classes (table), 13-3
definition, 13-1

histogram. See image histogram.
hit-miss function, binary morphology

analysis, 15-13 to 15-15
concept and mathematics, 15-13
examples, 15-13 to 15-15

hole filling function, 15-21

holes’ area parameter, 16-6
holes’ perimeter parameter, 16-7
hydraulic radius parameter, 16-15

I
image acquisition configuration, 6-1
image definition, 9-2
image files, 9-5
image histogram

3D view, 10-8
cumulative histogram, 10-6
definition, 10-4 to 10-5
histogram of color images, 10-6
interpretation, 10-6
line profile, 10-8
linear histogram, 10-5
scale of histogram, 10-7

Image object
IMAQ Hardware control, 6-6 to 6-7
setting type property, A-1
shared between IMAQ Hardware control

and Viewer control (figure), 6-7
image pixel frame, 9-6 to 9-8

arrangement (figure), 9-7
hexagonal frame, 9-8
rectangular frame, 9-7

image processing
acquisition and image processing

(tutorial), 7-11 to 7-14
color images, 9-5 to 9-6

image resolution, 9-2
images. See also color images; digital images.

definition, 9-1
types and formats, 9-3 to 9-4

bytes per pixel (table), 9-4
color images, 9-3
complex images, 9-3
gray-level images, 9-3

Index

ComponentWorks IMAQ Vision I-8 © National Instruments Corporation

IMAQ Hardware control, 6-5 to 6-9
asynchronous acquisition, 6-8
error handling, 6-9
ExceptionOnError and ErrorEventMask

properties, 6-9
Image object, 6-6 to 6-7
IMAQ object, 6-6
methods and events, 6-8 to 6-9
object hierarchy, 6-2

example (figure), 6-6
overview, 6-1 to 6-2
synchronous acquisition, 6-8
tutorial

asynchronous, single-image
acquisition and display,
6-12 to 6-13

synchronous, single-image
acquisition and display,
6-10 to 6-12

IMAQ object
methods and events, 6-8 to 6-9
overview, 6-6

IMAQ User Interface control.
See Viewer control.

installation, 1-2 to 1-4
Administrator privileges required

(note), 1-2
files installed on hard disk, 1-3 to 1-4
from floppy disks, 1-3
NI-IMAQ driver software, 2-1 to 2-2

intensity calibration, 16-2
intensity threshold, 16-2
interclass variance technique, in automatic

thresholding, 15-6
interface. See user interface, building.
internal edge function, binary

morphology analysis
description, 15-12
examples, 15-12

Item method, setting properties, 1-10

L
labeling function, 15-21
Laplacian filters, 13-12 to 13-17

contour extraction and highlighting,
13-14 to 13-15

contour thickness, 13-15 to 13-16
example, 13-12 to 13-13
kernel definition, 13-13
predefined kernels, 13-16 to 13-17

length of digital objects, 16-7 to 16-8
breadth, 16-7
height, 16-8
holes' perimeter, 16-7
particle perimeter, 16-7

line profile, 10-8
linear histogram, 10-5
linear or convolution filters, 13-3 to 13-22

classes (table), 13-3
Gaussian filters, 13-20 to 13-22

example, 13-20
kernel definition, 13-21
predefined kernels, 13-21 to 13-22

gradient filters, 13-4 to 13-12
edge extraction and edge

highlighting, 13-7 to 13-8
edge thickness, 13-9
example, 13-4 to 13-5
filter axis and direction, 13-6 to 13-7
kernel definition, 13-5
predefined gradient kernels,

13-10 to 13-12
Prewitt filters, 13-10
Sobel filters, 13-11

Laplacian filters, 13-12 to 13-17
contour extraction and highlighting,

13-14 to 13-15
contour thickness, 13-15 to 13-16
example, 13-12 to 13-13
kernel definition, 13-13
predefined kernels, 13-16 to 13-17

Index

© National Instruments Corporation I-9 ComponentWorks IMAQ Vision

mathematical concepts, 13-2
overview, 13-3 to 13-4
smoothing filters, 13-17 to 13-20

example, 13-17
kernel definition, 13-18 to 13-19
predefined kernels, 13-19 to 13-20

logarithmic and inverse gamma corrections,
11-6 to 11-8

examples, 11-7 to 11-8
Logarithmic, Square Root, and Power 1/Y

functions, 11-7
transfer function (table), 11-3

Logarithmic function
example, 11-8
lookup transformations, 11-7
transfer functions (table), 11-3

logic operator functions, IMAQ Vision
(table), 7-3

logic operators, 12-2 to 12-7
examples, 12-5 to 12-7
extracting and removing information

(example), 12-3
list of operators (table), 12-2 to 12-3
truth tables, 12-4

lookup table (LUT) transformations,
11-1 to 11-10

color lookup table transformation, 9-2
definition, 11-1
example, 11-2 to 11-3
predefined lookup tables

Equalize function, 11-4 to 11-5
exponential and gamma corrections,

11-8 to 11-10
logarithmic and inverse gamma

corrections, 11-6 to 11-8
Reverse function, 11-5 to 11-6
summary (table), 11-3

purpose and use, 11-1 to 11-2
lowpass FFT filters, 14-7 to 14-9

attenuation, 14-7
examples, 14-8 to 14-9

overview, 14-2
truncation, 14-8

lowpass filters
binary morphology analysis

description, 15-22
example, 15-23

classes (table), 13-3
definition, 13-1
nonlinear, 13-26

L-skeleton function, 15-25
LUT. See lookup table (LUT) transformations.

M
manual. See documentation.
mask FFT filters, 14-2
Mask operator (table), 12-2
max chord length parameter, 16-10
max chord X and max chord Y parameter, 16-9
max intercept parameter, 16-10
Max operator (table), 12-3
mean chord X parameter, 16-10
mean chord Y parameter, 16-10
mean intercept perpendicular parameter, 16-10
Mean operator (table), 12-3
median filter, 13-27
methods

definition, 1-4
learning about, 1-11 to 1-12
setting properties, 1-10 to 1-11
Viewer object, 6-3
working with control methods

Delphi, 5-6 to 5-7
overview, 1-10 to 1-11
Visual Basic, 3-5
Visual C++, 4-8

metric technique, in automatic
thresholding, 15-5

Microsoft Foundation Classes Application
(MFC) Wizard, 4-1, 4-2

Min operator (table), 12-3

Index

ComponentWorks IMAQ Vision I-10 © National Instruments Corporation

min(X, Y) and max(X, Y) parameter, 16-9
moments of inertia Ixx, Iyy, Ixy, 16-14
moments technique, in automatic

thresholding, 15-5
morphological transformations

categories, 15-1
definition, 15-1

morphology analysis, 15-1 to 15-36
advanced binary functions,

15-21 to 15-36
border, 15-21
circle, 15-29
comparisons between segmentation

and skiz functions, 15-27
convex, 15-30
Danielsson, 15-28 to 15-29
distance, 15-27
highpass filters, 15-22 to 15-23
hole filling, 15-21
labeling, 15-21
lowpass and highpass filter

example, 15-23
lowpass filters, 15-22
segmentation, 15-26 to 15-27
separation, 15-24
skeleton, 15-24 to 15-26

gray-level functions, 15-31 to 15-36
auto-median, 15-36
closing, 15-33
dilation, 15-31 to 15-32
erosion, 15-31
erosion and dilation examples, 15-32
opening, 15-33
opening and closing examples,

15-33 to 15-34
proper-closing, 15-35
proper-opening, 15-34 to 15-35

overview, 15-1
primary binary functions, 15-7 to 15-21

auto-median, 15-20 to 15-21
closing, 15-11

dilation, 15-8
erosion, 15-8
erosion and dilation examples,

15-9 to 15-10
external and internal edge

examples, 15-12
external edge, 15-12
hit-miss, 15-13 to 15-15
internal edge, 15-12
opening, 15-10 to 15-11
opening and closing examples, 15-11
proper-closing, 15-20
proper-opening, 15-19
thickening, 15-17 to 15-19
thinning, 15-15 to 15-17

structuring element, 15-6 to 15-7
thresholding, 15-1 to 15-6

automatic, 15-3 to 15-6
clustering, 15-3 to 15-5
color image, 15-3
entropy, 15-5
example, 15-2
interclass variance, 15-6
metric, 15-5
moments, 15-5

morphology functions, IMAQ Vision
(table), 7-4

M-skeleton function, 15-25
Multiply operator (table), 12-2

N
NAND operator (table), 12-2
NI-IMAQ driver software, installing,

2-1 to 2-2
nonlinear filters, 13-22 to 13-28

classes (table), 13-3
differentiation filter, 13-25
gradient filter, 13-25
lowpass filter, 13-26
mathematical concepts, 13-2

Index

© National Instruments Corporation I-11 ComponentWorks IMAQ Vision

median filter, 13-27
Nth order filter, 13-27 to 13-28
Prewitt filter, 13-22 to 13-23
Roberts filter, 13-25
Sigma filter, 13-26
Sobel, 13-23 to 13-24

NOR operator (table), 12-2
Nth order filter

description, 13-27
examples, 13-28

number of holes parameter, 16-6
number of pixels parameter, 16-5

O
Object Browser, in Visual Basic, 3-6 to 3-8
object creation functions, IMAQ Vision

(table), 7-6
object hierarchy

example (figure), 1-6
IMAQ Hardware control, 6-2
overview, 1-5
Viewer control, 6-2

objects. See digital objects.
OLE controls. See controls.
online reference

accessing, 1-1, 1-11, 2-3
ComponentWorks Support Web Site, 2-6
finding specific information, 2-3
learning about properties, methods, and

events, 1-11 to 1-12
overview, 2-3
searching complete text, 2-6

opening function
binary morphology analysis

description, 15-10 to 15-11
opening and closing examples, 15-11

gray-level morphology analysis
description, 15-33
examples, 15-33 to 15-34

operators, 12-1 to 12-7
arithmetic operators (table), 12-2
concepts and mathematics, 12-1
logic operators, 12-2 to 12-7

examples, 12-5 to 12-7
extracting and removing information

(example), 12-3
list of operators (table), 12-2 to 12-3
truth tables, 12-4

optical representation, FFT display, 14-6
OR operator (table), 12-2

P
Palette object

properties and methods, 6-4
Viewer control, 6-2

palettes, 10-1 to 10-4
binary palette, 10-3
B&W (gray) palette, 10-2
definition, 10-1
gradient palette, 10-3
purpose and use, 10-1 to 10-2
rainbow palette, 10-3
temperature palette, 10-3

particle analysis (tutorial), 7-10 to 7-11
particle area parameter, 16-5
particle number parameter, 16-5
particle orientation parameter, 16-10 to 16-11
particle perimeter parameter, 16-7
pasting code, in Visual Basic, 3-8 to 3-9
picture element, 9-1
pixel depth, 9-2
pixels, 9-1. See also image pixel frame.
planes, number of, in digital images, 9-2 to 9-3
polygon region, stopping drawing of, A-2
Power 1/Y function

examples, 11-8
lookup transformations, 11-7
transfer functions (table), 11-3

Index

ComponentWorks IMAQ Vision I-12 © National Instruments Corporation

Power Y function
example, 11-10
lookup transformations, 11-9
transfer functions (table), 11-3

Prewitt filters
nonlinear, 13-22 to 13-23
predefined gradient filter, 13-10

primary binary morphology analysis
functions. See binary morphology
analysis functions.

processing functions, IMAQ Vision
(table), 7-3

proper-closing function
binary morphology analysis, 15-20
gray-level morphology analysis, 15-35

proper-opening function
binary morphology analysis, 15-19
gray-level morphology analysis,

15-34 to 15-35
properties

definition, 1-4
editing programmatically

Delphi, 5-6
overview, 1-9
Visual Basic, 3-4 to 3-5

learning about, 1-11 to 1-12
setting, 1-7 to 1-11

developing event handler
routines, 1-11

Item method, 1-10
using property pages, 1-7 to 1-9
working with methods, 1-10 to 1-11

using in programming environments
Delphi, 5-4 to 5-5
Visual Basic, 3-3 to 3-5
Visual C++, 4-6 to 4-8

property pages
custom property page

definition, 1-8
example (figure), 1-8

setting properties for controls, 1-7 to 1-8
Visual Basic default property sheets

(figure), 1-8

Q
quantitative analysis, 16-1 to 16-19

definition of digital objects, 16-2 to 16-5
area threshold, 16-4 to 16-5
connectivity, 16-3 to 16-4
intensity threshold, 16-2

intensity calibration, 16-2
object measurements, 16-5 to 16-19

areas, 16-5 to 16-7
chords and axes, 16-9 to 16-11
coordinates, 16-8 to 16-9
densitometry, 16-18
diverse measurements,

16-18 to 16-19
lengths, 16-7 to 16-8
shape equivalence, 16-11 to 16-14
shape features, 16-14 to 16-18

spatial calibration, 16-1
questions about ComponentWorks, A-1 to A-2

R
rainbow palette, 10-3
ratio area parameter, 16-6
reading image from file and thresholding

(tutorial), 7-7 to 7-9
rectangle big side parameter, 16-13
rectangle ratio parameter, 16-14
rectangle small side parameter, 16-13
rectangular image pixel frame, 9-7
redistribution files. See distribution and

redistribution files.
Regions collection

properties and methods, 6-4
in Viewer control, 6-2

Regions object, 6-2

Index

© National Instruments Corporation I-13 ComponentWorks IMAQ Vision

regions of interest, manipulating
Feature Find application, 8-2 to 8-3
programmatically (example), 8-7

Remainder operator (table), 12-2
Report objects, 8-8 to 8-9
requirements for getting started, 1-2
return codes, adding to applications,

8-11 to 8-12
Reverse function, 11-5 to 11-6

display of photometric negative of image
(figure), 11-5

example, 11-6
transfer function (table), 11-3

RGB intensities, 9-2
RGB-chunky standard, 9-3
Roberts filter, 13-25
run-time licenses, C-3 to C-4

S
scale of histogram, 10-7
scanned area parameter, 16-6
search function, Vision control (table), 7-6
segmentation function

compared with skiz function, 15-27
description, 15-26 to 15-27

separation function, binary morphology
analysis, 15-24

shape equivalence, 16-11 to 16-14
ellipse major axis, 16-12
ellipse minor axis, 16-13
ellipse ratio, 16-13
equivalent ellipse minor axis, 16-12
rectangle big side, 16-13
rectangle ratio, 16-14
rectangle small side, 16-13

shape features, 16-14 to 16-18
compactness factor, 16-15
elongation factor, 16-14
Heywood circularity factor, 16-15
hydraulic radius, 16-15

moments of inertia Ixx, Iyy, Ixy, 16-14
Waddel disk diameter, 16-16 to 16-18

derived measurements (table),
16-16 to 16-18

primary measurements, 16-16
shape matching (example), 8-7 to 8-8
Sigma filter, 13-26
single stepping, for debugging

applications, 8-14
skeleton functions, 15-24 to 15-26

comparison between segmentation
and skiz functions, 15-27

L-skeleton, 15-25
M-skeleton, 15-25
skiz, 15-26

skiz function
compared with segmentation

function, 15-27
description, 15-26

smoothing filters, 13-17 to 13-20
example, 13-17
kernel definition, 13-18 to 13-19
predefined kernels, 13-19 to 13-20

Sobel filters
nonlinear, 13-23 to 13-24
predefined gradient filters, 13-11

software object, 1-5
spatial calibration, 16-1
spatial filters, 13-1 to 13-28

categories, 13-1
classification summary (table), 13-3
concepts and mathematics, 13-1 to 13-3
definition, 13-1
linear or convolution filters, 13-3 to 13-22

Gaussian filters, 13-20 to 13-22
gradient filter, 13-4 to 13-12
Laplacian filters, 13-12 to 13-17
smoothing filters, 13-17 to 13-20

nonlinear filters, 13-22 to 13-28
differentiation filter, 13-25
gradient filter, 13-25

Index

ComponentWorks IMAQ Vision I-14 © National Instruments Corporation

lowpass filter, 13-26
median filter, 13-27
Nth order filter, 13-27 to 13-28
Prewitt filter, 13-22 to 13-23
Roberts filter, 13-25
Sigma filter, 13-26
Sobel, 13-23 to 13-24

spatial resolution, 9-2
Square function

example, 11-10
lookup transformations, 11-9
transfer functions (table), 11-3

Square Root function
example, 11-8
lookup transformations, 11-7
transfer functions (table), 11-3

standalone objects, creating. See also
distribution and redistribution files.

Delphi applications, 5-8
Visual Basic applications, 3-10
Visual C++ applications, 4-10

standard representation, FFT display, 14-5
step into, 8-14
step over, 8-14
structuring element, in morphology analysis,

15-6 to 15-7
Subtract operator (table), 12-2
synchronous acquisition

IMAQ Hardware control, 6-8
tutorial, 6-10 to 6-12

system requirements, 1-2

T
technical support, D-1 to D-2
telephone and fax support numbers, D-2
temperature palette, 10-3
testing and debugging applications,

8-13 to 8-14

thickening function, binary morphology
analysis, 15-17 to 15-19

description, 15-17
examples, 15-18 to 15-19

thinning function, binary morphology
analysis, 15-15 to 15-17

description, 15-15 to 15-16
examples, 15-16 to 15-17

three dimensional (3D) view, 10-8
threshold

area threshold, 16-4 to 16-5
intensity threshold, 16-2

thresholding, 15-1 to 15-6
automatic, 15-3 to 15-6

clustering, 15-3 to 15-5
entropy, 15-5
interclass variance, 15-6
metric, 15-5
moments, 15-5

color image, 15-3
example, 15-2
overview, 15-1 to 15-2
reading an image from file and

thresholding (tutorial), 7-7 to 7-9
tools and utilities. See image histogram;

palettes.
tools functions, IMAQ Vision (table),

7-2 to 7-3
total area parameter, 16-6 to 16-7
transformation functions. See morphology

analysis.
troubleshooting distribution and redistribution

files, C-4
truncation

highpass FFT filters, 14-10
lowpass FFT filters, 14-8

truth tables, 12-4

Index

© National Instruments Corporation I-15 ComponentWorks IMAQ Vision

U
user interface, building

Delphi applications, 5-4 to 5-5
placing controls, 5-4
using property pages, 5-4 to 5-5

Visual Basic applications, 3-2 to 3-5
editing properties programmatically,

3-4 to 3-5
using property pages, 3-3 to 3-4

Visual C++ applications, 4-4 to 4-5

V
Viewer control, 6-2 to 6-5

common questions, A-1
events, 6-4 to 6-5
object hierarchy, 6-2

example (figure), 6-3
objects in Viewer control, 6-2
overview, 6-1 to 6-2
Palette object, 6-4
Regions collection, 6-4
setting redraw rate, A-2
sizing, A-1
tutorial

asynchronous, single-image
acquisition and display,
6-12 to 6-13

synchronous, single-image
acquisition and display,
6-10 to 6-12

Viewer object
definition, 6-2
methods, 6-3
properties, 6-3

Visible property, Feature Find application,
8-3 to 8-4

Vision control, 7-1 to 7-14
function summary (table), 7-2 to 7-6

alignment, 7-6
analysis, 7-4
arithmetic operators, 7-3
caliper, 7-6
color, 7-5
complex, 7-5
files, 7-2
filters, 7-3 to 7-4
geometry, 7-4
logic operators, 7-3
morphology, 7-4
object creation, 7-6
processing, 7-3
search, 7-6
tools, 7-2 to 7-3

overview, 7-1
tutorial, 7-7 to 7-14

acquisition and image processing,
7-11 to 7-14

particle analysis, 7-10 to 7-11
reading image from file and

thresholding, 7-7 to 7-9
Visual Basic, 3-1 to 3-10

automatic code completion, 3-9
building user interface, 3-2 to 3-5

editing properties programmatically,
3-4 to 3-5

using property pages, 3-3 to 3-4
creating standalone objects, 3-10
default property sheets (figure), 1-8
developing event routines, 3-5 to 3-6
loading ComponentWorks IMAQ Vision

controls into toolbox, 3-2
pasting code into programs, 3-8 to 3-9
procedure overview, 3-1
using Object Browser, 3-6 to 3-8
working with methods, 3-5

Index

ComponentWorks IMAQ Vision I-16 © National Instruments Corporation

Visual C++, 4-1 to 4-10
adding ComponentWorks IMAQ Vision

controls to toolbar, 4-3 to 4-4
building user interface, 4-4 to 4-5
creating standalone objects, 4-10
events, 4-9 to 4-10
methods, 4-8
MFC AppWizard, 4-2 to 4-3
procedure overview, 4-1
programming with ComponentWorks

controls, 4-5 to 4-6
properties, 4-6 to 4-8

W
Waddel disk diameter, 16-16 to 16-18

derived measurements (table),
16-16 to 16-18

primary measurements, 16-16
warning events, adding to applications,

8-12 to 8-13
watch windows, 8-14
Web site for ComponentWorks support, 2-6

X
XOR operator (table), 12-2

	Getting Results with ComponentWorks™ IMAQ�Vision
	Support
	Internet Support
	Bulletin Board Support
	Fax-on-Demand Support
	Telephone Support (USA)
	International Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Organization of This Manual
	Part�I, Building ComponentWorks IMAQ Vision Applications
	Part�II, Using the ComponentWorks IMAQ Vision Controls
	Part�III, Introduction to Vision
	Appendices, Glossary, and Index

	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Introduction to ComponentWorks IMAQ Vision
	What Is ComponentWorks IMAQ Vision?
	System Requirements
	Installing ComponentWorks IMAQ Vision
	Installing From Floppy Disks
	Installed Files

	About the ComponentWorks Controls
	Properties, Methods, and Events
	Object Hierarchy
	Collection Objects

	Setting the Properties of an ActiveX Control
	Using Property Pages
	Changing Properties Programmatically
	Item Method
	Working with Control Methods
	Developing Event Handler Routines

	Learning the Properties, Methods, and Events

	Chapter 2 Getting Started with ComponentWorks
	Install and Configure Driver Software
	Explore the ComponentWorks IMAQ Vision Documentation
	Getting Results with ComponentWorks IMAQ Vision Manual
	ComponentWorks Online Reference
	Accessing the Online Reference
	Finding Specific Information

	Become Familiar with the Examples Structure
	Develop Your Application
	Seek Information from Additional Sources

	Part I Building ComponentWorks IMAQ Vision Applications
	Chapter 3 Building ComponentWorks IMAQ Vision Applications with Visual Basic
	Developing Visual Basic Applications
	Loading ComponentWorks IMAQ Vision Controls into the Toolbox
	Building the User Interface Using ComponentWorks
	Using Property Pages
	Using Your Program to Edit Properties

	Working with Control Methods
	Developing Control Event Routines
	Using the Object Browser to Build Code in Visual Basic
	Pasting Code into Your Program
	Adding Code Using Visual Basic Code Completion

	Creating Standalone Objects

	Chapter 4 Building ComponentWorks IMAQ Vision Applications with Visual C++
	Developing Visual C++ Applications
	Creating Your Application
	Adding ComponentWorks Controls to the Visual C++ Controls Toolbar
	Building the User Interface Using ComponentWorks
	Programming with the ComponentWorks Controls
	Using Properties
	Using Methods
	Using Events

	Creating Standalone Objects

	Chapter 5 Building ComponentWorks IMAQ Vision Applications with Delphi
	Running Delphi Examples
	Developing Delphi Applications
	Loading ComponentWorks Controls into the Component Palette
	Building the User Interface
	Placing Controls
	Using Property Pages

	Programming with ComponentWorks
	Using Your Program to Edit Properties
	Using Methods
	Using Events

	Creating Standalone Objects

	Part II Using the ComponentWorks IMAQ Vision Controls
	Chapter 6 Using the Viewer and Hardware Controls
	Image Acquisition Configuration
	What Are the Viewer and Hardware Controls?
	Object Hierarchy

	Viewer Control—IMAQ User Interface Control
	Viewer Object
	Regions Collection
	Region Object

	Palette Object
	Viewer Events

	IMAQ Control—IMAQ Hardware Interface
	IMAQ Object
	Image Object
	IMAQ Methods and Events
	Asynchronous Acquisition
	Synchronous Acquisition
	Error Handling
	ExceptionOnError and ErrorEventMask

	Tutorial: Using the Viewer and IMAQ Controls
	Part 1: Synchronous, Single-Image Acquisition and Display
	Designing the Form
	Setting the IMAQ Properties
	Developing the Code
	Testing Your Program

	Part 2: Asynchronous, Continuous Single-Image Acquisition and Display
	Designing the Form
	Setting the IMAQ Properties
	Developing the Code
	Testing Your Program

	Chapter 7 Using the Vision Control
	What is the Vision Control?
	Vision Functions
	Tutorial: Using Simple Image Processing Functions
	Part 1: Reading an Image From a File and Thresholding
	Designing the Form
	Developing the Code
	Testing Your Program

	Part 2: Particle Analysis
	Designing the Form
	Developing the Code
	Testing Your Program

	Part 3: Acquisition and Image Processing
	Designing the Form
	Setting the IMAQ Properties
	Developing the Code
	Testing Your Program

	Chapter 8 Building Advanced IMAQ Vision Applications
	Finding Features on a Printed Circuit Board
	Manipulating Regions of Interest through the User Interface
	AutoDelete, Active, and Visible Properties
	Finding Features and Displaying Results

	Floppy Disk Inspection
	Manipulating Regions of Interest Programmatically
	Edge Detection and Shape Matching

	Report Objects
	Adding Testing and Debugging to your Application
	Error Checking
	Exceptions
	Return Codes
	Error and Warning Events
	Debugging
	Debug Print
	Breakpoint
	Watch Window
	Single Step, Step Into, and Step Over

	Part III Introduction to Vision
	Chapter 9 Algorithms, Principles of Image Files, and Data Structures
	Introduction to Digital Images
	Properties of a Digitized Image
	Image Resolution
	Image Definition
	Number of Planes

	Image Types and Formats
	Gray-Level Images
	Color Images
	Complex Images

	Image Files
	Processing Color Images
	Image Pixel Frame
	Rectangular Frame
	Hexagonal Frame

	Chapter 10 Tools and Utilities
	Palettes
	B&W (Gray) Palette
	Temperature Palette
	Rainbow Palette
	Gradient Palette
	Binary Palette

	Image Histogram
	Definition
	Linear Histogram
	Cumulative Histogram
	Interpretation
	Histogram of Color Images
	Histogram Scale
	Line Profile
	3D View

	Chapter 11 Lookup Transformations
	About Lookup Table Transformations
	Example

	Predefined Lookup Tables
	Equalize
	Example 1
	Example 2

	Reverse
	Example

	Logarithmic and Inverse Gamma Correction
	Exponential and Gamma Correction

	Chapter 12 Operators
	Concepts and Mathematics
	Arithmetic Operators
	Logic Operators
	Truth Tables
	Example 1
	Example 2

	Chapter 13 Spatial Filtering
	Concept and Mathematics
	Spatial Filter Classification Summary

	Linear Filters or Convolution Filters
	Gradient Filter
	Example
	Kernel Definition
	Filter Axis and Direction
	Edge Extraction and Edge Highlighting
	Edge Thickness
	Predefined Gradient Kernels

	Laplacian Filters
	Example
	Kernel Definition
	Contour Extraction and Highlighting
	Contour Thickness
	Predefined Laplacian Kernels

	Smoothing Filter
	Example
	Kernel Definition
	Predefined Smoothing Kernels

	Gaussian Filters
	Example
	Kernel Definition
	Predefined Gaussian Kernels

	Nonlinear Filters
	Nonlinear Prewitt Filter
	Nonlinear Sobel Filter
	Example
	Nonlinear Gradient Filter
	Roberts Filter
	Differentiation Filter
	Sigma Filter
	Lowpass Filter
	Median Filter
	Nth Order Filter
	Examples

	Chapter 14 Frequency Filtering
	Introduction to Frequency Filters
	Lowpass FFT Filters
	Highpass FFT Filters
	Mask FFT Filters

	Definition
	FFT Display
	Standard Representation
	Optical Representation

	Frequency Filters
	Lowpass Frequency Filters
	Lowpass Attenuation
	Lowpass Truncation

	Highpass Frequency Filters
	Highpass Attenuation
	Highpass Truncation

	Chapter 15 Morphology Analysis
	Thresholding
	Example
	Thresholding a Color Image
	Automatic Threshold
	Clustering
	Entropy
	Metric
	Moments
	Interclass Variance

	Structuring Element
	Primary Binary Morphology Functions
	Erosion Function
	Concept and Mathematics

	Dilation Function
	Concept and Mathematics

	Erosion and Dilation Examples
	Opening Function
	Closing Function
	Opening and Closing Examples
	External Edge Function
	Internal Edge Function
	External and Internal Edge Example
	Hit-Miss Function
	Concept and Mathematics
	Example 1
	Example 2

	Thinning Function
	Examples

	Thickening Function
	Examples

	Proper-Opening Function
	Proper-Closing Function
	Auto-Median Function

	Advanced Binary Morphology Functions
	Border Function
	Hole Filling Function
	Labeling Function
	Lowpass Filters
	Highpass Filters
	Lowpass and Highpass Example
	Separation Function
	Skeleton Functions
	L-Skeleton Function
	M-Skeleton Function
	Skiz Function

	Segmentation Function
	Comparisons Between Segmentation and Skiz�Functions

	Distance Function
	Danielsson Function
	Example

	Circle Function
	Example

	Convex Function
	Example

	Gray-Level Morphology
	Erosion Function
	Concept and Mathematics

	Dilation Function
	Concept and Mathematics

	Erosion and Dilation Examples
	Opening Function
	Closing Function
	Opening and Closing Examples
	Proper-Opening Function
	Proper-Closing Function
	Auto-Median Function

	Chapter 16 Quantitative Analysis
	Spatial Calibration
	Intensity Calibration
	Definition of a Digital Object
	Intensity Threshold
	Connectivity
	Connectivity-8
	Connectivity-4

	Area Threshold

	Object Measurements
	Areas
	Particle Number
	Number of Pixels
	Particle Area
	Scanned Area
	Ratio
	Number of Holes
	Holes’ Area
	Total Area

	Lengths
	Particle Perimeter
	Holes’ Perimeter
	Breadth
	Height

	Coordinates
	Center of Mass X and Center of Mass Y
	Min(X, Y) and Max(X, Y)
	Max Chord X and Max Chord Y

	Chords and Axes
	Max Chord Length
	Mean Chord X
	Mean Chord Y
	Max Intercept
	Mean Intercept Perpendicular
	Particle Orientation

	Shape Equivalence
	Equivalent Ellipse Minor Axis
	Ellipse Major Axis
	Ellipse Minor Axis
	Ellipse Ratio
	Rectangle Big Side
	Rectangle Small Side
	Rectangle Ratio

	Shape Features
	Moments of Inertia Ixx, Iyy, Ixy
	Elongation Factor
	Compactness Factor
	Heywood Circularity Factor
	Hydraulic Radius
	Waddel Disk Diameter

	Densitometry
	Diverse Measurements

	Appendix A Common Questions
	Appendix B Error Codes
	Appendix C Distribution and Redistributable Files
	Files
	Distribution
	Automatic Installers
	Manual Installation

	ComponentWorks IMAQ Evaluation
	Run-Time Licenses
	Troubleshooting

	Appendix D Customer Communication
	Electronic Services
	Telephone and Fax Support
	Technical Support Form
	ComponentWorks IMAQ Vision Hardware and Software Configuration�Form
	National Instruments Products
	Other Products

	Documentation Comment Form

	Glossary
	Numbers
	A
	B-C
	D
	E
	F-G
	H
	I-L
	M
	N
	P-Q
	R-S
	T-Z

	Index
	Numbers
	A
	B
	C
	D
	E
	F-G
	H-I
	L
	M
	N
	O-P
	Q-R
	S
	T
	U-V
	W-X

	Figures
	Figure 1-1. IMAQ Control Object Hierarchy
	Figure 1-2. Visual Basic Default Property Sheets
	Figure 1-3. ComponentWorks Custom Property Pages
	Figure 3-1. Visual Basic Property Pages
	Figure 3-2. ComponentWorks Custom Property Pages
	Figure 3-3. Selecting Events in the Code Window
	Figure 3-4. Viewing CWIMAQ in the Object Browser
	Figure 3-5. Viewing CWIMAQ in the Object Browser
	Figure 3-6. Visual Basic 5 Code Completion
	Figure 4-1. New Dialog Box
	Figure 4-2. MFC AppWizard— Step 1
	Figure 4-3. CWIMAQ Control Property Sheets
	Figure 4-4. MFC ClassWizard—Member Variable Tab
	Figure 4-5. Viewing Property Functions and Methods in the Workspace Window
	Figure 4-6. Event Handler
	Figure 5-1. Delphi Import ActiveX Control Dialog Box
	Figure 5-2. ComponentWorks Controls on a Delphi Form
	Figure 5-3. Delphi Object Inspector
	Figure 5-4. ComponentWorks IMAQ Control Property Pages
	Figure 5-5. Delphi Object Inspector Events Tab
	Figure 6-1. Viewer Control Object Hierarchy
	Figure 6-2. IMAQ Control Object Hierarchy
	Figure 6-3. Viewer Control and IMAQ Control Can Share an Image Object
	Figure 6-4. Simple IMAQ Example Form
	Figure 6-5. Testing the Simple IMAQ Example
	Figure 7-1. IMAQ File Example
	Figure 7-2. Testing the IMAQ File Example
	Figure 7-3. Testing the IMAQ File Example After Adding Particle Analysis
	Figure 7-4. Image Acquisition Threshold Example
	Figure 7-5. Testing the Image Acquisition Threshold Example
	Figure 8-1. Feature Find Application
	Figure 8-2. Floppy Disk Inspection
	Figure 8-3. Visual Basic Error Message
	Figure 8-4. Error Message Box
	Figure 9-1. Rectangular Frame
	Figure 9-2. Hexagonal Frame
	Figure 10-1. Linear Vertical Scale
	Figure 10-2. Linear Cumulative Scale
	Figure 10-3. Linear Vertical Scale
	Figure 10-4. Logarithmic Vertical Scale
	Figure 15-1. Rectangular Frame, Neighborhood 3 ° 3
	Figure 15-2. Hexagonal Frame, Neighborhood 5 ° 3

	Tables
	Table 2-1. Chapters about Specific Programming Environments
	Table 7-1. IMAQ Vision Functions
	Table 9-1. Bytes Per Pixel
	Table 13-1. Prewitt Filters
	Table 13-2. Sobel Filters
	Table 13-3. Gadient 5 x 5
	Table 13-4. Gradient 7 x 7
	Table 13-5. Laplacian 3 x 3
	Table 13-6. Laplacian 5 x 5
	Table 13-7. Laplacian 7 x 7
	Table 13-8. Smoothing 3 x 3
	Table 13-9. Smoothing 5 x 5
	Table 13-10. Smoothing 7 x 7
	Table 13-11. Gaussian 3 x 3
	Table 13-12. Gaussian 5 x 5
	Table 13-13. Gaussian 7 x 7
	Table B-1. ComponentWorks Errors
	Table B-2. ComponentWorks IMAQ Errors
	Table B-3. IMAQ Errors
	Table B-4. Vision Errors

